收藏 分销(赏)

分子生物学C-自整.doc

上传人:精*** 文档编号:2141154 上传时间:2024-05-19 格式:DOC 页数:12 大小:160.26KB
下载 相关 举报
分子生物学C-自整.doc_第1页
第1页 / 共12页
分子生物学C-自整.doc_第2页
第2页 / 共12页
分子生物学C-自整.doc_第3页
第3页 / 共12页
分子生物学C-自整.doc_第4页
第4页 / 共12页
分子生物学C-自整.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、Immunology based techniques:1. ELISA酶联免疫吸附实验(ELISA) 即将已知的抗原或抗体吸附在固相载体表面,使酶标记的抗原抗体反应在固相表面进行的技术。该技术可用于检测大分子抗原和特异性抗体等,具有快速、灵敏、简便、载体易于标准化等优点。基本原理:它采用抗原与抗体的特异反应将待测物与酶连接,然后通过酶与底物产生颜色反应,用于定量测定。测定的对象可以是抗体也可以是抗原。在这种测定方法中有3种必要的试剂:固相的抗原或抗体(免疫吸附剂) 酶标记的抗原或抗体(标记物)酶作用的底物(显色剂)测量时,抗原(抗体)先结合在固相载体上,但仍保留其免疫活性,然后加一种抗体(抗

2、原)与酶结合成的偶联物(标记物),此偶联物仍保留其原免疫活性与酶活性,当偶联物与固相载体上的抗原(抗体)反应结合后,再加上酶的相应底物,即起催化水解或氧化还原反应而呈颜色。其所生成的颜色深浅与欲测的抗原(抗体)含量成正比。 这种有色产物可用肉眼、光学显微镜、电子显微镜观察,也可以用分光光度计(酶标仪)加以测定。其方法简单,方便迅速,特异性强。特点:灵敏性高:该测定法的灵敏度来自作为报告基团的酶。众所周知, 酶是一种有机催化剂,很少量的酶即可诱导大量的催化反应 ,产生可供观察的显色反应现象。因此该体系常被称为酶放大体系。ELISA实现了在细胞或亚细胞水平上示踪抗原或抗体的所在部位,或在微克、甚至

3、纳克水平上对其进行定量。特异性强:其特异性来自抗体或抗原的选择性。抗原抗体的结合实质上只发生在抗原的抗原决定簇与抗体的抗原结合位点之间。由于两者在化学结构和空间构型上呈互补关系,所以抗原抗体反应具有高度的特异性。2. Immunohistochemistry免疫组化,是应用免疫学基本原理抗原抗体反应,即抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂(荧光素、酶、金属离子、同位素)显色来确定组织细胞内抗原(多肽和蛋白质),对其进行定位、定性及相对定量的研究,称为免疫组织化学技术(immunohistochemistry)或免疫细胞化学技术(immunocytochemistry)。基

4、本原理:抗体和抗原之间的结合具有高度的特异性,免疫组织化学正是利用了这一原理。先将组织或细胞中的某种化学物质提取出来,以此作为抗原或半抗原,通过免疫动物后获得特异性的抗体,再以此抗体去探测组织或细胞中的同类的抗原物质。由于抗原与抗体的复合物是无色的,因此还必须借助于组织化学的方法将抗原抗体结合的部位显示出来,以其达到对组织或细胞中的未知抗原进行定性,定位或定量的研究。免疫组织化学的临床应用主要包括以下几方面:恶性肿瘤的诊断与鉴别诊断;确定转移性恶性肿瘤的原发部位;对某类肿瘤进行进一步的病理分型;软组织肿瘤的治疗一般需根据正确的组织学分类,因其种类多、组织形态相像,有时难以区分其组织来源,应用多

5、种标志进行免疫组化研究对软组织肿瘤的诊断是不可缺少的;发现微小转移灶,有助于临床治疗方案的确定,包括手术范围的确定。为临床提供治疗方案的选择。3. Western Blotting蛋白质印迹法(免疫印迹试验)即Western Blot。它是分子生物学、生物化学和免疫遗传学中常用的一种实验方法。其基本原理是通过特异性抗体对凝胶电泳处理过的细胞或生物组织样品进行着色。通过分析着色的位置和着色深度获得特定蛋白质在所分析的细胞或组织中表达情况的信息。蛋白免疫印迹(Western Blot)是将电泳分离后的细胞或组织总蛋白质从凝胶转移到固相支持物NC膜或PVDF 膜上,然后用特异性抗体检测某特定抗原的一

6、种蛋白质检测技术,现已广泛应用于基因在蛋白水平的表达研究、抗体活性检测和疾病早期诊断等多个方面。基本原理:与Southern Blot或Northern Blot杂交方法类似,但Western Blot法采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE(聚丙烯酰胺凝胶电泳)分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异

7、性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。4. Immunoprecipitation免疫沉淀是利用抗体特异性反应纯化富集目的蛋白的一种方法。抗体与细胞裂解液或表达上清中相应的蛋白结合后,再与蛋白A/G(ProteinA/G)或二抗偶联的agarose或Sepharose珠子孵育,通过离心得到珠子-蛋白A/G或二抗-抗体-目的蛋白复合物,沉淀经过洗涤后,重悬于电泳上样缓冲液,煮沸5-10min,在高温及还原剂的作用下,抗原与抗体解离,离心收集上清,上清中包括抗体、目的蛋白和少量的杂蛋白。优点(1)相互作用的蛋白质都是经翻译后修饰的,处于天然状态;(2)蛋白的相互作用是在自

8、然状态下进行的,可以避免人为的影响;(3)可以分离得到天然状态的相互作用蛋白复合物。缺点(1)可能检测不到低亲和力和瞬间的蛋白质蛋白质相互作用;(2)两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;(3)必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。(4)灵敏度没有亲和色谱高。5. Cytometry流式细胞术(Flow Cytometry, FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统的荧光镜检查相比,具有速度

9、快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。流式细胞仪( Flow cytometry ,FCM) 将流体喷射技术、激光光学技术、电子技术和计算机技术等集于一体,较其它方法有不可比拟的优越性,既可定性又可定量,且具有简单、快速和敏感性高的特点,可进行多参数和活体细胞分析。在APO 的研究得到较为广泛的应用,开辟了新途径。特点1.测量速度快;2.可进行多参数测量;3.是一门综合性的高科技方法( FCM综合了光学,电子学,流体力学,细胞化学,免疫学,激光和计算机等多门学科和技术);4.既是细胞分析技术,又是精确的分选技术。Animal models:动物疾病模型主要用于实验生理学

10、、实验病理学和实验治疗学(包括新药筛选)研究。人类疾病的发展十分复杂,以人本身作为实验对象来深入探讨疾病发生机制,推动医药学的发展来之缓慢,临床积累的经验不仅在时间和空间上都存在局限性,而且许多实验在道义上和方法上也受到限制。而借助于动物模型的间接研究,可以有意识地改变那些在自然条件下不可能或不易排除的因素,以便更准确地观察模型的实验结果并与人类疾病进行比较研究,有助于更方便、更有效地认识人类疾病的发生发展规律,研究防治措施。动物模型的优越性主要表现在以下几下方面。(一)避免了在人身上进行实验所带来的风险(二)临床上平时不易见到的疾病可用动物随时复制出来(三)可以克服人类某些疾病潜伏期长,病程

11、长和发病率低的缺点(四)可以严格控制实验条件,增强实验材料的可比性(五)可以简化实验操作和样品收集(六)有助于更全面地认识疾病的本质因此利用动物疾病模型来研究人类疾病,可以克服平时一些不易见到,而且不便于在病人身上进行实验的各种人类疾病的研究。同时还可克服人类疾病发生发展缓慢,潜伏期长,发病原因多样,经常伴有各种其它疾病等因素的干扰,可以用单一的病因,在短时间内复制出典型的动物疾病模型,对于研究人类各种疾病的发生、发展规律和防治疾病疗效的机理等是极为重要的手段和工具。1. Genetics model2. Development model3. Special model (e.g. lang

12、uage model and circadian model)4. Diseases modelCell culture based techniques1. Cell viability test细胞活力检测:由组织中分离细胞检查活力以了解分离过程对细胞是否有损伤作用。复苏后的细胞也要检查细胞活力,了解冻存和复苏的效果。2. Cell migration test细胞迁移也称为细胞爬行、细胞移动或细胞运动,是指细胞在接收到迁移信号或感受到某些物质的梯度后而产生的移动。细胞迁移为细胞头部伪足的延伸、新的黏附建立、细胞体尾部收缩在时空上的交替过程。细胞迁移是正常细胞的基本功能之一,是机体正常生长

13、发育的生理过程,也是活细胞普遍存在的一种运动形式。胚胎发育、血管生成、伤口愈合、免疫反应、炎症反应、动脉粥样硬化、癌症转移等过程中都涉及细胞迁移。细胞凋亡检测:为了研究某一蛋白质在细胞迁移中所扮演的角色,一般来说科学家可以将某蛋白的编码基因进行突变,甚至应用新近的RNAi现象,或者加入该蛋白质的阻断剂(inhibitor)来抑制某一个蛋白质的表现,并分析此抑制对于细胞迁移的影响,反而得知被抑制的蛋白质与细胞迁移的作用。3. Apoptosis detection细胞凋亡检测:在胚胎发育、造血、免疫系统的成熟以及维护正常组织和器官的细胞恒定与生长平衡,乃至机体衰老方面都起着重要作用。因此,有关凋

14、亡的研究在临床和基础等各个领域已经广泛开展,凋亡细胞的检测方法显得非常重要。4. Cell cycle synchronization在一般培养条件下,群体中的细胞处于不同的细胞周期时相之中。为了研究某一时相细胞的代谢、增殖、基因表达或凋亡,常需采取一些方法使细胞处于细胞周期的同一时相,这就是细胞同步化技术。选用DNA合成抑制剂可逆地抑制S期细胞DNA合成而不影响其他细胞周期运转,最终可将细胞群体阻断在G1/S期交界处;一些抑制微管聚合的药物,因抑制有丝分裂装置的形成和功能行使,可将细胞阻断在有丝分裂中期,即使细胞同步于M期。同步化细胞的检测:对各个时期的同步化细胞可通过流式细胞术来鉴定其细胞

15、周期,通过比较各时相细胞的百分比,看是否达到预期的目的。5. High content screeningHCS是指在保持细胞结构和功能完整性的前提下,同时检测被筛样品对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导各个环节的影响, 在单一实验中获取大量与基因、蛋白及其他细胞成分相关的信息, 确定其生物活性和潜在毒性的过程。同时, 也是一种应用高分辨率的荧光数码影像系统,旨在获得被筛样品对细胞产生的多维立体和实时快速的生物效应信息, 在细胞水平上检测多个指标的多元化、功能性筛选技术平台。HCS的优势高内涵筛选的筛选结果是多样化的,它以多指标多靶点共同作用为主要特点,涉及的靶点包括胞内成分

16、、细胞的膜受体、细胞器等。从筛选载体上看,高内涵药物筛选与高通量药物筛选并没有显著的区别,也在微孔板上进行。其优点是它的检测体积并未因检测指标增加而增高,操作步骤同样简单可行、自动化。更重要的是, 获取信息是以细胞为单位,而不像是以微板孔为单位,这就意味着研究者可以从细胞群体中的各种反应获取信息,而不是像以前那样信息仅仅来源于一个微板孔中的所有细胞的平均反应。也就是说,研究者得以用更少的时间和花费进行更多的实验,获取更多研究信息和统计相关数据。基于细胞的小分子库高内涵筛选已用于识别新的有治疗作用的先导化合物,目前已对十万余个化合物展开了基于图像的筛选。目前高内涵药物筛选主要在影响细胞功能方面应

17、用,例如细胞毒性、G蛋白偶联受体调节剂、转录因子的活化、活性物质释放等。可调节的扫描模板可用于腔室玻片、多孔板以及组织芯片扫描。多重扫描任务可应用于单个腔室或多孔,对个体实验设计提供最大的自由度。获取的数据立刻传输到本地服务器以便进行有效分析和存储,独立于平台的开放式显微镜环境(OME)接口自动创建链接到现有的图像分析解决方案总而言之,HCS为单个实验提供高度的灵活性和真实的图像,并确保高通量研究所需的自由度,应用广泛且灵活性强。Imaging based techniques1. Fluorescent labeling荧光标记技术指利用一些能发射荧光的物质共价结合或物理吸附在所要研究分子的

18、某个基团上,利用它的荧光特性来提供被研究对象的信息。2. FRET荧光共振能量转移当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光, 同时供体荧光分子自身的荧光强度衰减。FRET 程度与供、受体分子的空间距离紧密相关,一般为710 nm 时即可发生FRET; 随着距离延长, FRET呈显著减弱。 供体和受体之间FRET的效率,可以由E=1/1+(R/R0)exp6反映,其中R表示供体和受体之间的距离,R0表示福氏半径,依赖供体发射谱和受体激发谱的重叠程度,以及供体和受体能量转移的偶极子的相对方位。发生原

19、理荧光共振能量转移是指在两个不同的荧光基团中,如果一个荧光基团(供体 Donor)的发射光谱与另一个基团(受体 Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于100),就可观察到荧光能量由供体向受体转移的现象,即以前一种基团的激发波长激发时,可观察到后一个基团发射的荧光。简单地说,就是在供体基团的激发状态下由一对偶极子介导的能量从供体向受体转移的过程,此过程没有光子的参与,所以是非辐射的,供体分子被激发后,当受体分子与供体分子相距一定距离,且供体和受体的基态及第一电子激发态两者的振动能级间的能量差相互适应时,处于激发态的供体将把一部分或全部能量转移给受体,使

20、受体被激发,在整个能量转移过程中,不涉及光子的发射和重新吸收。如果受体荧光量子产率为零,则发生能量转移荧光熄灭;如果受体也是一种荧光发射体,则呈现出受体的荧光,并造成次级荧光光谱的红移。3. Infrared imaging红外成像技术是一项前途广阔的高新技术。比0.78微米长的电磁波位于可见光光谱红色以外,称为红外线,又称红外辐射。是指波长为0.781000微米的电磁波,其中波长为0.782.0微米的部分称为近红外,波长为2.01000微米的部分称为热红外线。自然界中,一切物体都可以辐射红外线,因此利用探测仪测量目标本身与背景间的红外线差可以得到不同的热红外线形成的红外图像。4. Dual-

21、Luciferase assayLuciferase报告基因系统是以荧光素(luciferin)为底物来检测萤火虫荧光素酶(fireflyluciferase)活性的一种报告系统。荧光素酶可以催化luciferin氧化成oxyluciferin,在luciferin氧化的过程中,会发出生物荧光(bioluminescence)。然后可以通过荧光测定仪也称化学发光仪(luminometer)或液闪测定仪测定luciferin氧化过程中释放的生物荧光。荧光素和荧光素酶这一生物发光体系,可以极其灵敏、高效地检测基因的表达。是检测转录因子与目的基因启动子区DNA相互作用的一种检测方法。转录因子是一种具

22、有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。某些转录因子仅与其靶启动子中的特异序列结合,这些特异性的序列被称为顺式作用元件,转录因子的DNA结合域和顺式作用元件实现共价结合,从而对基因的表达起抑制或增强的作用。荧光素酶报告基因实验(luciferase assay)是检测这类转录因子和其靶启动子中的特异顺序结合的重要手段。其原理简述如下:(1)构建一个将靶启动子的特定片段插入到荧光素酶表达序列前方的报告基因质粒,如pGL3-basic等。(2) 将要检测的转录因子表达质粒与报告基因质粒共转染293细胞或其它相关的细胞系。如果此转录因子能够激活靶启动子,则荧光素酶基因就会表

23、达,荧光素酶的表达量与转录因子的作用强度成正比。(3) 加入特定的荧光素酶底物,荧光素酶与底物反应,产生荧光,通过检测荧光的强度可以测定荧光素酶的活性,从而判断转录因子是否能与此靶启动子片段有作用。5. Live imaging分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。分子成像技术可用于研究观测特异性细胞、基因和分子的表达或互作过程,同时检测多种分子事件,追踪靶细胞,药物和基因治疗最优化,从分子和细胞水平对药物疗效进行成像,从分子病理水平评估疾病发展过程,对同一

24、个动物或病人进行时间、环境、发展和治疗影响跟踪。成像的优点转基因老鼠分子成像和传统的体外成像或细胞培养相比有着明显优点。首先,分子成像能够反映细胞或基因表达的空间和时间分布,从而了解活体动物体内的相关生物学过程、特异性基因功能和相互作用。第二,由于可以对同一个研究个体进行长时间反复跟踪成像,既可以进步数据的可比性,避免个体差异对试验结果的可影响,又不需要杀死模式动物,节省了大笔科研用度。第三,尤其在药物开发方面,分子成像更是具有划时代的意义。根据统计结果,由于进进临床研究的药物中大部分由于安全题目而终止,导致了在临床研究中大量的资金浪费,而分子成像技术的问世,为解决这一困难提供了广阔的空间,将

25、使药物在临床前研究中通过利用分子成像的方法,获得更具体的分子或基因述水平的数据,这是用传统的方法无法了解的领域,所以分子成像将对新药研究的模式带来革命性变革。其次,在转基因动物、动物基因打靶或制药研究过程中,分子成像能对动物的性状进行跟踪检测,对表型进行直接观测和(定量)分析。6. MRIMolecular cloning techniques1. RT-PCR逆转录PCR(reverse transcription PCR)或者称反转录PCR(reverse transcription-PCR, RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被

26、逆转录成为互补DNA,再以此为模板通过PCR进行DNA扩增。RT-PCR的指数扩增是一种很灵敏的技术,可以检测很低拷贝数的RNA。RT-PCR广泛应用于遗传病的诊断,并且可以用于定量监测某种RNA的含量。检测基因表达的方法,参见Northern Blot法。RT-PCR的关键步骤是在RNA的反转录,要求RNA模版为完整的且不含DNA、蛋白质等杂质。常用的反转录酶有两种,即鸟类成髓细胞性白细胞病毒(avian myeloblastosis virus,AMV)反转录酶和莫罗尼鼠类白血病病毒(moloney murine leukemia virus,MMLV)反转录酶。在完成逆转录过程之后,通过

27、PCR进行定量分析的时候,随着技术的发展,real-time PCR(实时荧光PCR)或ddPCR(数字PCR)技术也被用来做定量分析,它们比普通PCR进行定量分析时灵敏度更高,定量更精确。2. Real-time PCRReal-Time PCR 技术,又称实时定量荧光PCR,是指在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行总量分析或通过Ct值对模板进行相对定量。定量PCR已经从基于凝胶的低通量分析发展到高通量的荧光分析技术,即实时定量PCR。实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,由于该

28、技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点。实时定量PCR (real-time quantitative PCR)是指在PCR指数扩增期间通过连续监测荧光信号强弱的变化来即时测定特异性产物的量,并据此推断目的基因的初始量,不需要取出PCR产物进行分离。实时定量PCR作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域。适用性和特点:1、具有高适应性和可靠性,实验结果稳定重复性好,特异性更高。2、适用于扩增序列专一的体系的检测。3、样品中靶基因含量过低的定量PCR检测。4、靶基因的特异序列较短,无论怎

29、样优化引物设计条件都不能解决。5、存在与靶基因同源的序列,在PCR中容易出现非特异性扩增,对特异性要求较高的定量。6、广泛用于人类传染病的诊断和病原定量,在动物病原体基因的检测,畜禽产品的检验检疫,生物制品的鉴定。3. Mutagenesis PCR4. Prokaryotic expression system原核表达系统:在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA片段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过IPTG诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表

30、达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。5. Eucaryotic expression system真核表达系统:为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是: 根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑

31、制;能诱导基因高效表达,可达105倍,为其他系统所不及;能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。6. genome or cDNA library基因组文库(Genomic Library)定义:把某种生物基因组的全部遗传信息通过克隆载体贮存在一个受体菌克隆子群体中,这个群体即为这种生物的基因组文库。用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到

32、细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。7. DNA sequencingDNA测序(DNA sequencing,或译DNA定序)是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式。快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现。在基础生物学研究中,和在众多的应用领域,如诊断,生物技术,法医生物学,生物系统学中,DNA序列知识已成为不可缺少的知识。具有现代的DNA测序技术的快速测序速度已经有助于达到测序完整的D

33、NA序列,或多种类型的基因组测序和生命物种,包括人类基因组和其他许多动物,植物和微生物物种的完整DNA序列。测序目的:确定重组DNA的方向与结构对突变进行定位和鉴定比较研究8. Next generation sequencing日本大阪大学产业科学研究所的传合知二教授和谷口正辉副教授的研究小组利用电测方法,成功识别构成DNA(脱氧核糖核酸)的核酸碱基的一个分子。这一方法与目前的DNA测序检测原理完全不同,具有超高速、无标记和低成本的优点,在量体定制个人医疗、精确搜查罪犯、超高速检验病毒等领域具有极高应用价值。相关论文发表在自然纳米技术杂志网络版上。依据个人遗传信息开发医疗药品、根据精确的DN

34、A检测迅速抓捕罪犯、超高速高精度检查流感病毒,这些都要求开发出快速低成本的DNA测序法。实现下一代DNA测序的基本原理是在纳米空洞中配置纳米电极,用电测方法测量一个DNA的核酸碱基排列。但是电测识别一个分子的技术开发极其困难,尚未有验证该原理的实例。研究小组利用纳米加工技术制作电极间距为1纳米的电极,这种方法能在纳米电极间以0.01纳米的精度进行控制。随后将核酸碱基的一个分子夹在电极之间,通电后经过测定发现有三个核酸碱基分子显示异常电流值,证明通过电测可识别一个分子单位的核酸碱基分子种类。这种电测方法是下一代DNA测序基本原理在世界上首次验证成功。研究人员将纳米电极放入溶解在水溶液中的构成DN

35、A要素的4个核酸碱基分子,即腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶。在测定电极间的电流时间变化时发现,除腺嘌呤之外的3个核酸碱基分子各有不同的电流值,根据电流值的不同,可识别出不同的核酸碱基分子。在两个核酸碱基分子等量混合时进行测定,可观测到两个核酸碱基分子的特征性电流峰值,验证了可根据电流值识别相应的核酸碱基分子。Gene manipulation1. Viral vectors related technology a) Lentivirusb) AAVc) phage display病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入其他细胞,进行感染的

36、分子机制。可发生于完整活体或是细胞培养中。可应用于基础研究、基因疗法或疫苗。可供利用的病毒可分为逆转录病毒、慢病毒与腺病毒。2. Transgenic animal将外源重组基因转染并整合到动物受体细胞基因组中,从而形成在体内表达外源基因的动物,称为转基因动物。转基因动物表达系统,包括外源基因、表达载体和受体细胞等,基因组的转移则是细胞核移植和动物克隆技术,人工合成与设计基因、全基因乃至基因组的转基因技术是合成生物学。遗传的基本物质是DNA,基因则是位于染色体上有遗传效应的DNA片段,对于储存在生物全套染色体中的全部遗传信息,可称其为基因组。由于不同种类、不同个体的生物基因组成是不同的,因此对

37、动物个体来说,非自身的基因成分属于外源基因,如果把外源基因整合或导入动物染色体基因中,那么这个外源基因就被称为转基因(transgene)(即转移来的基因),这种动物就是转基因动物(transgenic animals)。转基因动物是指将特定的外源基因导全动物受精卵或胚胎,使之稳定整合于动物的染色体基因组并能遗传给后代的一类动物。3. TetON/tetOFF system4. Cre/Lox systemCre-LoxP重组酶系统在新型基因打靶中获得广泛应用,是条件性基因打靶、诱导性基因打靶、时空特异性基因打靶策略的技术核心。基于Cre-LoxP的基因打靶要分两步来进行。首先要在胚胎干细胞的

38、基因组中引入LoxP序列,这一步可以通过打靶载体的设计和对同源重组子的筛选来实现。下一步通过Cre介导的重组来实现靶基因的遗传修饰或改变。Cre-LoxP系统既可以在细胞水平上用Cre重组酶表达质粒转染中靶细胞,通过识别LoxP位点将抗性标记基因切除,又可以在个体水平上将重组杂合子小鼠与Cre转基因小鼠杂交,筛选子代小鼠就可得到删除外源标记基因的条件性敲除小鼠。或者将Cre基因置于可诱导的启动子控制下,通过诱导表达Cre重组酶而将LoxP位点之间的基因切除(诱导性基因敲除),实现特定基因在特定时间或者组织中的失活。5. RNA interferenceRNA干扰(RNA interferenc

39、e, RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。基因沉默,主要有转录前水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,(长度超过三十的dsRNA会引起干扰素毒性)所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的治疗领域。1.高效性 2、特异性 位置效应

40、 竞争效应可传播性6. Antisense RNA反义RNA,根据反义RNA的作用机制可将其分为3类:类反义RNA直接作用于靶mRNA的S D序列和(或)部分编码区,直接抑制翻译,或与靶mRNA结合形成双链RNA,从而易被RNA酶 降解;类反义RNA与mRNA的非编码区结合,引起mRNA构象变化,抑制翻译;类反义RNA则直接抑制靶mRNA的转录。反义RNA是指与mRNA互补的RNA分子,也包括与其它RNA互补的RNA分子。由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合, 即抑制了该mRNA的翻译。通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式,最早是

41、在E.coli 的产肠杆菌素的Col E1质粒中发现的,许多实验证明在真核生物中也存在反义RNA。近几年来通过人工合成反义RNA的基因, 并将其导入细胞内转录成反义RNA,即能抑制某特定基因的表达,阻断该基因的功能,有助于了解该基因对细胞生长和分化的作用。同时也暗示了该方法对肿瘤实施基因治疗的可能性。功能在原核生物中反义RNA具有多种功能,例如调控质粒的复制及其接合转移,抑制某些转位因子的转位,对某些噬菌体溶菌-溶源状态的控制等。下文仅举数例。7. Knock-down8. Knock-out基因敲除(knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因

42、,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。基因敲除和基因嵌入技术是上个世纪90年代出现的最新外源DNA导入技术。基因敲除是基因打靶技术的一种,类似于基因的同源重组。指外源DNA与受体细胞基因组中序列相同或相近的基因发生同源重组,从而代替受体细胞基因组中的相同/相似的基因序列,整合入受体细胞的基因组中。此法可产生精确的基因突变,也可正确纠正机体的基因突变。基因嵌入又称基因置换,它是利用内源基因序列两侧或外面的断裂点,用同源序列的目的基因整个置换内源基因。用于基因敲除和基因嵌入的技术有Cre/Lox P系统、FLPI系统等。基因敲除

43、就是通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的的一种技术。它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、可靠,它的发展将为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究、治疗手段,具有广泛的应用前景和商业价值。基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。9.

44、 Knock-in把已知基因转移到真核细胞,并且整合到基因组中得到稳定表达的技术,称为基因导入。它是改变物种遗传性状的最根本途径。要把基因导入细胞,首先要把细胞克隆化。目前已经得到了若干真核细胞克隆化基因,如-珠蛋白基因,TK基因等。利用显微镜操作把这些基因注入到小鼠受精卵的原核中,再把受精卵植入到生殖管道中,发育成的个体不仅能表达注入基因决定的性状,而且能把该基因传到第二代。10. Crispr/Cas9 genome editing基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势

45、,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。执行手段1)基因敲除:如果想使某个基因的功能丧失,可以在这个基因上产生DSB,NHEJ修复的过程中往往会产生DNA的插入或删除(indel),造成移码突变,从而实现基因敲除。2)特异突变引入:如果想把某个特异的突变引入到基因组上,需要通过同源重组来实现,这时候要提供一个含有特异突变同源模版。正常情况下同源重组效率非常低,而在这个位点产生DSB会极大的提高重组效率,从而实现特异突变的引入。3)定点转基因:与特异突变引入的原理一样,在同源模版中间加入一个转基因,这个转基因在DSB修复过程中会被拷贝到基因组中,从而实现定点转基因。通过定点转基因的方法可以把基因插入到人的基因组AAVS1位点,这个位点是一个开放位点,支持转基因长期稳定的表达,破坏这个位点对细胞没有不良影响,因此被广泛利用。

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服