资源描述
<p>历年高考物理力学牛顿运动定律知识点总结(超全)
1
单选题
1、在梯井中,由钢索悬挂竖直电梯C,顶部用绳子悬挂了球A,A下方焊接一个弹簧,弹簧下端悬挂球B,整个装置处于静止状态,简化示意图如图所示。已知绳子、弹簧的质量远小于两球质量,两球质量又远小于电梯质量。若悬挂电梯的钢索突然断裂,在电梯下落瞬间,球A、球B、电梯C各自加速度约为( )
A.9.8m/s2,9.8m/s2,0B.19.6m/s2,0,9.8m/s2
C.0,9.8m/s2,9.8m/s2D.9.8m/s2,0,9.8m/s2
答案:D
解析:
假设球A与电梯之间的绳子无弹力,则钢索突然断裂的瞬间,电梯只受重力其加速度为g,而A受到弹簧向下的拉力其加速度大于g,则假设不成立,可知球A与电梯之间的绳子有弹力,可得电梯与球A的加速度相同,因为电梯质量远大于两球质量,钢索断裂后,电梯可视为在自身重力下运动,因此加速度大小为g=9.8m/s2,弹簧形变量在瞬间不会发生突变,因此球B受力不变,其加速度为0。
故选D。
2、中国航天员王亚平在天宫一号空间实验室进行太空授课演示质量的测量实验。实验通过舱壁打开的一个支架形状的质量测量仪完成。测量过程如图所示,航天员甲把自己固定在支架一端,航天员乙将支架拉到指定位置释放,支架拉着航天员甲由静止返回舱壁。已知支架能产生恒定的拉力F,光栅测速装置能测出支架复位时的速度v和所用的时间t,最终测出航天员甲的质量,根据提供的信息,以下说法正确的是( )
A.宇航员在火箭发射过程中处于失重状态
B.航天员甲的质量为Ftv
C.天宫一号在太空中处于超重状态
D.太空舱中,不可以利用弹簧测力计测拉力的大小
答案:B
解析:
A.宇航员在火箭发射过程中,随火箭加速上升,具有向上的加速度,处于超重状态,A错误;
B.支架复位过程,航天员甲的加速度为
a=vt
由牛顿第二定律可得
F=Ma
联立解得
M=Ftv
B正确;
C.天宫一号在太空中处于失重状态,C错误;
D.太空舱中,可以利用弹簧测力计测拉力的大小,不受失重的影响,D错误。
故选B。
3、科学研究发现,在月球表面:①没有空气;②重力加速度约为地球表面的16;③没有磁场。若宇航员登上月球后,在空中同时释放氢气球和铅球,忽略地球和其他星球对月球的影响,以下说法正确的是( )
A.氢气球和铅球都处于超重状态
B.氢气球将加速上升,铅球加速下落
C.氢气球和铅球都将下落,但铅球先落到地面
D.氢气球和铅球都将下落,且同时落地
答案:D
解析:
由于在月球表面没有空气,没有磁场,物体在月球表面只受重力作用,物体由静止释放,将做自由落体运动,位移h相同,运动的加速度g相同,运动的时间也一定相同,应该同时落地。自由落体运动处于完全失重状态。
故选D。
4、一个倾角为θ=37°的斜面固定在水平面上,一个质量为m=1.0kg的小物块(可视为质点)以v0=4.0m/s的初速度由底端沿斜面上滑,小物块与斜面的动摩擦因数μ=0.25。若斜面足够长,已知sin37°=0.6,cos37°=0.8,g取10m/s2。小物块上滑的最大距离为( )
A.1.0 mB.2.2 mC.0.8 mD.0.4 m
答案:A
解析:
小物块在斜面上上滑过程受力情况如图所示
根据牛顿第二定律有
mgsinθ+μmgcosθ=ma
解得
a=gsin37∘+μgcos37∘=8m/s2
小物块沿斜面上滑做匀减速运动,到达最高点时速度为零,则有
v12-v02=2ax
解得
x=v022a=1.0m
故A正确,BCD错误。
故选A。
多选题
5、如图,质量为0.5kg的物块A放在一个纵剖面为矩形的静止木箱内,物块A和木箱水平底面之间的动摩擦因数为0.3.物块A的右边被一根轻弹簧用1.2N的水平拉力向右拉着而保持静止。设最大静摩擦力等于滑动摩擦力,g取10m/s2,现在要使弹簧能拉动物块A相对木箱底面水平移动,木箱的运动情况可能是( )
A.竖直向下匀加速运动,加速度的大小a=3m/s2
B.竖直向下匀减速运动,加速度的大小a=6m/s2
C.水平向左匀加速运动,加速度的大小a=3m/s2
D.水平向左匀减速运动,加速度的大小a=6m/s2
答案:ACD
解析:
AB.要使弹簧拉动物块A相对木箱地面运动,物块A受到的木箱对他的最大静摩擦力要小于弹簧对它的拉力,即
fm<T=1.2N
fm=μFN
解得
FN<4n a="mg-FNm">2m/s2
要让木箱在竖直方向上向下加速或者向上减速,加速大小大于2m/s2,B错误,A正确;
C.如果让木箱在水平方向运动,要使弹簧能拉动物块A相对木箱底面向右移动,则物块的加速度要向左,根据牛顿第二定律
μFN'-T=ma'
FN'=mg=5N
解得
a'=0.6m/s2
即木箱以加速度大于0.6m/s2向左匀加速运动,C正确。
D.如果让木箱在水平方向运动,要使弹簧能拉动物块A相对木箱底面向左移动,则物块的加速度要向右,根据牛顿第二定律
μFN'+T=ma''
FN'=mg=5N
解得
a''=5.4m/s2
即木箱以加速度大于5.4m/s2向右匀加速运动,D正确。
故选ACD。
6、质量为m1、m2的两物体A、B并排静止在水平地面上,用同向水平拉力F1、F2分别作用于A和B上,作用一段时间后撤去,A、B运动的v-t图像如图中图线a、b所示,己知拉力F1、F2分别撤去后,物体做减速运动过程的v-t图线彼此平行(相关数据已在图中标出),由图中信息可知( )
A.若F1=F2,则m1小于m2
B.若m1=m2,则力F1对物体A所做的功较多
C.若m1=m2,则力F1对物体A的冲量与F2对B的冲量之比为4∶5
D.若m1=m2,则力F1的最大瞬时功率一定是力F2的最大瞬时功率的2倍
答案:ACD
解析:
由图可知,物体A撤去拉力之前的加速度为
a1=2.51.5ms2=53ms2
物体B撤去拉力之前的加速度为
a2=23ms2
己知拉力F1、F2分别撤去后,物体做减速运动过程的v-t图线彼此平行,则撤去拉力后物体A、B的加速度相等为
a=1ms2
撤去拉力后,根据牛顿第二定律可得
μ1m1g=m1a,μ2m2g=m2a
可得
μ1g=μ2g=1
物体A撤去拉力之前,根据牛顿第二定律有
F1-μ1m1g=m1a1
解得
F1=83m1
物体B撤去拉力之前,根据牛顿第二定律有
F2-μ2m2g=m1a2
解得
F2=53m2
A.当
F1=F2
即
83m1=53m2
则
m1<m2
故A正确;
B.若两物体的质量相等,设物体质量为m,则拉力F1对物块A做的功为
WA=F1xA=83m⋅12vamta=5mJ
则拉力F2对物块B做的功为
WB=F2xB=53m⋅12vbmtb=5mJ
则拉力F1对物块A做的功等于拉力F2对物块B做的功,故B错误;
C.若两物体的质量相等,设物体质量为m,,则拉力F1对物块A的冲量为
I1=F1ta=83m⋅32=4mN⋅s
拉力F2对物块B的冲量为
I1=F2tb=53m⋅3=5mN⋅s
则力F1对物体A的冲量与F2对B的冲量之比为
I1I2=4m5m=45
故C正确;
D.若两物体的质量相等,设物体质量为m,,则拉力F1对物块A的最大瞬时功率为
P1=F1vam=83m⋅52=203mW
拉力F2对物块B的最大瞬时功率为
P2=F2vbm=53m⋅2=103mW
则力F1的最大瞬时功率一定是力F2的最大瞬时功率的2倍,故D正确。
故选ACD。
7、如图所示,足够长水平传送带以大小为v0的速度顺时针匀速转动,将一质量为m的小物块(可视为质点)静止放置在传送带的左端,同时对小物块施加竖直向上的力F,力的大小满足F=kv,v为小物块的水平速度,小物块与传送带间的动摩擦因数为μ,重力加速度为g,下列所画出的小物块的水平速度v随时间变化的图象(图中t0=v0μg,vm=mgk)可能正确的是( )
A.B.
C.D.
答案:BC
解析:
D.小物块由静止开始向右做加速运动,开始运动后受到重力mg、竖直向上的力F、支持力N=mg-F、水平向右的滑动摩擦力f=μN,若kv0<mg,根据牛顿第二定律可知,小物块运动的加速度大小
a=μmg-kvm
可见随着速度v的增大,小物块做加速度逐渐减小的加速运动。故D错误;
A.当v=0时,a=μg=v0t0,所以图线在O点的切线应过点t0,v0。故A错误;
B.当mg=kvm时,a=0,对应速度vm=mgk,当vm</p><v0时,小物块加速到vm时,支持力n=0,摩擦力为零,小物块脱离传送带做匀速运动。故b正确; vm="">v0,小物块加速到v0时,小物块与传送带共速,摩擦力为零,小物块随传送带一起向右做匀速运动。故C正确。
故选BC。
8、一木块静止在水平地面上,下列说法中正确的是( )
A.木块受到的重力和支持力是一对平衡力
B.地面对木块的支持力与木块对地面的压力是一对平衡力
C.木块受到的重力和支持力是一对作用力与反作用力
D.地面对木块的支持力与木块对地面的压力是一对作用力与反作用力
答案:AD
解析:
AC.木块受到重力和支持力作用而处于平衡状态,故重力和支持力是一对平衡力,A正确,C错误;
BD.地面对木块的支持力与木块对地面的压力是一对作用力与反作用力,B错误,D正确。
故选AD。
填空题
9、一对作用力和反作用力_______是同一种类的力,而一对相互平衡的力_______是同一种类的力。(均选填“一定”或“不一定”)
答案: 一定 不一定
解析:
略
10、2021年5月,“天问一号” 着陆巡视器带着“祝融号”火星车软着陆火星时,在“降落伞减速”阶段,垂直火星表面速度由396m/s减至61m/s,用时168s,此阶段减速的平均加速度大小为___________m/s2;地球质量约为火星质量的9.3倍,地球半径约为火星半径的1.9倍,“天问一号”质量约为5.3吨,“天问一号”在“降落伞减速”阶段受到的平均空气阻力约为___________N。(本题答案保留一位有效数字)
答案: 2 3×104
解析:
[1]减速阶段加速度大小为
a=v1-v2t=396-61168m/s2≈2m/s2
[2]根据
mg=GMmR2
结合题意可知
g地=2.6g火=9.8m/s2
火星车着陆时,根据牛顿第二定律可知
f-mg火=ma
解得
f≈3×104N
11、如图所示,一根质量不计的轻弹簧上端固定在天花板上,下端与一重力为G的托盘连接,托盘中有一个质量为2G的砝码。当托盘静止时,弹簧的伸长量为L。现将托盘向下拉,弹簧又伸长了L(未超过弹簧的弹性限度),然后使托盘由静止释放,则刚释放托盘时,砝码对托盘的作用力大小等于___________。
答案:4G
解析:
[1]设弹簧劲度系数为k,设砝码质量为2m,则托盘质量为m,托盘静止,弹簧伸长L时,以托盘及砝码整体为研究对象,受力平衡,有
kL=3mg
伸长2L时,释放瞬间,以整体为研究对象,由牛顿第二定律得
2kL-3mg=3ma
解得
a=g
隔离砝码为研究对象,则
N-2mg=2ma
解得
N=4mg
据牛顿第三定律,砝码对托盘的作用力为4mg,即4G。
12、小明同学学习了牛顿运动定律后,自制了一个简易加速度计。如图,在轻杆的上端装有转轴,固定于竖直放置的标有角度的木板上的O点,轻杆下端固定一个小球,杆可在竖直面内自由转动。他利用这个加速度计来测量校车的加速度,测量时他应让板面竖直且与校车的运动方向__________(选填“垂直”或“平行”),已知重力加速度大小为g,当轻杆与竖直方向的夹角为θ时,校车的加速度大小为___________。
答案: 平行 gtanθ
解析:
[1][2]由加速度原理知,小车加速度在水平方向,则板面与校车运动方向平行,当轻杆与竖直方向的夹角为θ时,受力分析如图
由平衡条件知,小球不上下移动,即竖直方向合力为0,则有
F'mg=tanθ
由牛顿第二定律知
F'=ma
解得
a=gtanθ
解答题
13、如图甲所示,在粗糙的水平地面上有一足够长的木板B,木板的最左端有一个小物块A,小物块A受一个外力的作用,两个物体开始运动,已知物块A和木板B的质量都为1千克,物块A和木板B之间的动摩擦因数为μ1=0.4,B与地面的动摩擦因数为μ2=0.1,设物体所受最大静摩擦力等于滑动摩擦力,物块A运动的v2-x函数关系如图乙所示,重力加速度g取10m/s2。求:
(1)根据图象得出物块A在2米前后加速度a1和a2分别为多大?
(2)当外力F0至少为多少可以使物块A相对于木板B运动?
(3)物块A在运动前2米的过程中所加的外力F1为多少?运动了2米之后,作用于物块A上的外力F2又为多少?
答案:(1)1m/s2;4m/s2;(2)6N;(3)4N;8N
解析:
(1)由图像可知:前2m内对A有
v2=2a1x
得出
a1=1m/s2
2m后,对A有
v12-v02=2a2x
a2=4m/s2
(2)对B受力分析有
μ1mg-μ22mg=ma0
外力F使A在B上的临界加速度为
a0=2m/s2
外力F对AB整体有
F0-μ2⋅2mg=2ma0
F0=6N
(3)运动前2m
a1=1m/s2<a0 22mg="2ma1" f1="4N" a2="4m/s2">a0
则2m后AB两个物体开始相对运动
对A有
F2-μ1mg=ma2
F2=8N
14、如图甲所示,倾角 α = 37° 的光滑斜面固定在水平地面上,斜面长 LAB = 3 m,斜面底端 A 处有一质量 m = 1 kg 的小滑块,在平行于斜面向上的力F作用下由静止开始运动。已知 F 随位移 s (以 A 为起点)变化的关系如图乙所示,以水平地面为零重力势能面(g 取10 m/s2,sin37° = 0.6,cos37° = 0.8)。求:
(1)小滑块在通过前 1 m 位移过程中的加速度;
(2)小滑块通过第 2 m 位移所用的时间;
(3)小滑块在位移 s = 1 m 处时的机械能;
(4)在图丙上画出小滑块的机械能 E 随位移 s(0≤s≤3 m)变化的大致图线。
答案:(1)6 m/s2;(2)36s;(3)12 J;(4)
解析:
(1)在通过前 1 m位移的过程中,运用牛顿第二定律,有
F-mgsinα=ma
a = Fm-gsinα=121-10×0.6 = 6 m/s2
(2)对于前 1 m位移的过程,有
v2=2as1
v=2as1=2×6×1=23m/s
对于第2m位移的过程,有F=6N,mgsinα=6Ν,所以小滑块所受合为为零,小滑块作匀速运动
t2=s2v=123=36s
所以小滑块通过第 2 m位移所用的时间为36s。
(3)小滑块在位移 s = 1 m 处时
Ek=12mv2=12×1×(23)2=6J
Ep=mgssinα=1×10×1×0.6=6J
E = Ek + Ep = 12 J
(4)如图
15、如图所示为滑沙游戏,游客从顶端A点由静止滑下8s后,操纵刹车手柄使滑沙车匀速下滑至底端B点,在水平滑道上继续滑行直至停止。已知游客和滑沙车的总质量m=60kg,倾斜滑道AB长lAB=128m,倾角θ=37°,滑沙车底部与沙面间的动摩擦因数μ=0.5.滑沙车经过B点前后的速度大小不变,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力。求:
(1)游客匀速下滑时的速度大小;
(2)若游客在水平滑道BC段的最大滑行距离为16m,则他在此处滑行时,需对滑沙车施加多大的水平制动力。
答案:(1)16m/s;(2)180N
解析:
(1)由牛顿第二定律得
mgsinθ-µmgcosθ=ma
解得游客从顶端A点由静止加速下滑时的加速度大小
a=2m/s2
游客匀速下滑时的速度大小
v=at1=16m/s
(2)设游客在BC段的加速度大小为a′,由公式
0-v2=-2a′x
解得
a'=8m/s2
由牛顿第二定律得
F+µmg=ma′
解得制动力
F=180N
16、2022年2月8日,我国运动员谷爱凌在北京冬奥会自由式滑雪女子大跳台决赛中摘得金牌,如图所示为其平时训练的场景图。一滑雪道由PM和MN两段组成,其中PM段倾角为θ=30°,MN段水平,PM、MN平滑连接。谷爱凌(可视为质点)从滑道顶端P处保持两滑雪板平行由静止下滑,20s后检测到其速度达到144km/h,此时谷爱凌调整两滑雪板之间的角度使其保持做匀速直线运动,10s后再次使两滑雪板平行,又经过10s到达斜坡底端M处,保持两滑雪板平行做匀减速运动,最终停止在N点处。谷爱凌及其装备的总质量为m=80kg。已知谷爱凌可通过改变两滑雪板之间的角度来调整滑雪板与雪地之间的动摩擦因数。取g=10m/s2,不计空气阻力。求:
(1)谷爱凌匀速运动时雪地对滑雪板的摩擦力大小。
(2)M、N之间的距离。
(3)整个运动过程中谷爱凌克服摩擦力做的功。
答案:(1)400N;(2)1803m;(3)5.2×105J
解析:
(1)谷爱凌匀速运动时
f=mgsinθ=400N
(2)由静止下滑,20s后检测到其速度达到144km/h,加速度
a=gsinθ-μ'gcosθ=v0-0t1=2m/s2
10s后再次使两滑雪板平行,又经过10s到达斜坡底端M处,所以继续加速了10s,速度为
vM=v0+at=60m/s
保持两滑雪板平行做匀减速运动,加速度
a=μ'mgm=μ'g
解得
a=23m/s2
M、N之间的距离
x=vM22a=3003m
(3)斜面上总位移
x1=v02×t1+v0×t2+v0+vM2×t2=1300m
根据能量守恒,整个运动过程中谷爱凌克服摩擦力做的功
Wf=mgx1sinθ=5.2×105J
实验题
17、在“探究作用力与反作用力的关系”实验中,某同学将两个力传感器按如图甲方式对拉,其中一只系在墙上,另一只握在手中,在计算机屏上显示出力,如图乙所示。
(1)横坐标代表的物理量是________。
(2)由图可得到的实验结论是________(填字母)。
A.两力传感器间的作用力与反作用力大小相等
B.两力传感器间的作用力与反作用力方向相反
C.两力传感器间的作用力与反作用力同时变化
D.两力传感器间的作用力与反作用力作用在同一物体上
答案: 时间 ABC
解析:
考查牛顿第三定律探究实验。
(1)[1]由题可知,图乙表示的是力传感器上的作用力随时间变化的关系,所以横坐标代表的物理量是时间,纵坐标代表的物理量是力;
(2)[2]从图乙可以看出作用力与反作用力大小相等,方向相反,同时产生,同时变化,且作用在不同的物体上,故A、B、C正确,D错误。故选ABC。
18、如图所示某同学在探究物体自由落体运动的规律实验中打出了一条纸带,A、B、C、D、E是纸带上依次打出的5个点, A到B、C、D、E之间的距离分别为2.00cm、4.38cm、7.14cm、10.28cm,打点计时器所接电源的频率为50Hz,当地的重力加速度大小g=9.8m/s2。
(1)打点计时器打下C点时,物体的速度大小为________ms(结果保留两位有效数字);
(2)物体运动的加速度大小为________ms2(结果保留两位有效数字);
(3)若该物体的质量为2kg,则在运动过程中,该物体受到的平均阻力f=________N。
答案: 1.3 9.5 0.6
解析:
(1)[1]根据题意知纸带上相邻计数点间的时间间隔
T=0.02s
根据匀变速直线运动中间时刻瞬时速度等于该过程的平均速度得
vC=xBD2T=(7.14-2.00)×10-22×0.02m/s≈1.3m/s
(2)[2]根据逐差法得加速度为
a=xCE-xAC4T2=(10.28-4.38-4.38)×10-24×0.022m/s2=9.5m/s2
(3)[3]根据牛顿第二定律
mg-f=ma
得
f=mg-ma
代入数据解得
f=0.6N
19、某同学制作了一个“竖直加速度测量仪”,可以用来测量竖直上下电梯运行时的加速度,其构造如图所示。把一根轻弹簧上端固定在小木板上,下端悬吊0.9N重物时,弹簧下端的指针指木板上刻度为C的位置,把悬吊1.0N重物时指针位置的刻度标记为0,以后该重物就固定在弹簧上,和小木板上的刻度构成了一个“竖直加速度测量仪”。
(1)请在图中除0以外的6根长刻度线旁,标注加速度的大小,示数的单位用m/s2表示,加速度的方向向上为正、向下为负。说明这样标注的原理。
(2)仿照以上装置,设计一个“水平加速度测量仪”。要求:画出它的装置图;说明它的构造;介绍加速度刻度的标注原理。g取10 m/s2。
答案:(1) 标注原理见解析;(2) 构造和原理见解析;
解析:
(1)[1]悬吊1.0N重物时,由平衡条件得
mg=1.0
解得m=0.1kg
依题意,向上为正,在C点弹簧的弹力等于0.9N,根据牛顿第二定律得
0.9-mg=maC
解得aC=-1.0m/s2 ,所以在C点标注-1.0,以此类推标注其它刻度如图所示。
(2)[2]水平加速度测量仪如图所示,光滑槽放在水平桌面上,左端固定一块木板,带有指针的弹簧左端固定在木板上,右端连一个小球,带有刻度的木板固定在槽上,小球静止时指针指在零刻度,木板上的刻度表示加速度的数值,正刻度表示加速度方向向左,负刻度表示加速度方向向右。
刻度的标注原理如下:将装置竖直放置,按照(1)问的方法标注刻度,然后水平放置,移动刻度尺使0刻度对准指针,并固定刻度板。
20、(1)智能手机中有一个加速度传感器,在软件的驱动下,能够探测手机加速度的实时变化,并以图像形式显示出来,如图(a)所示。某学生利用如图(b)所示的实验装置来探究“当小车及手机总质量M不变的情况下,小车加速度a与拉力F的关系”。
按照图示安装好实验装置,把手机固定在小车上
A.挂上沙桶,点击手机软件开始按钮,释放小车,待小车停下·点击手机软件停止按钮,读出小车做匀加速运动的加速度a
B.调节导轨的倾角,使得轻推小车后,小车能沿着导轨向下匀速运动
C.取下细绳和沙桶。测量沙子和桶的质量m。改变沙子的质量,重新挂上细绳和沙桶。进行多次实验正确的实验步骤是__________
(2)某一次实验得到如图(c)所示的图像。开始计时1s后释放小车,由图像可知,小车在绳子拉力作用下做匀加速运动的加速度为__________m/s2,由此可以推断出实验桌面距离地面高度至少为__________m。(结果保留两位有效数字)
(3)下列说法正确的是__________
A.图线中A点表示刚好碰到弹簧·此时速度最大
B.图线中B点表示弹力刚好等于拉力,此时加速度为0,此时小车速度最大
C.图线中C点表示弹簧压缩量最大,此时加速度最大,速度也最大
D.图线中C点对应的弹簧的弹力约为6mg
答案: BAC 0.20 0.90 BD
解析:
(1)[1]实验时,首先要平衡摩擦力,使导轨倾斜一个角度,轻推小车做匀速运动,然后挂上沙桶,点击手机软件开始按钮,释放小车,待小车停下,点击手机软件停止按钮,读出小车做匀加速运动的加速度a,在改变沙子和桶的质量m重复进行,所以步骤是BAC。
(2)[2]根据图可得做匀加速运动的加速度为
a=0.20m/s2。
(2)[3]由图可知沙子和桶,开始做匀加速的时间是3秒,沙子和桶的运动的加速度和小车一样,则实验桌面距离地面高度大于等于沙子和桶下降的高度,所以实验桌面距离地面高度至少为
h=12at2=0.90m。
(3)[4]ABC.图线中A点表示刚好碰到弹簧,随着弹力的增大,小车先做加速度减小的加速运动,当弹力和拉力相等时即到达B点,加速度为零,速度最大,在做加速度增大的减速运动一直到达C点停止,此时加速度最大,速度为零,AC错误B正确;
D.小车做匀加速运动
mg=(m+M)a
到达C点时加速度为a1=1m/s2
F-mg=(m+M)a1
解得
F=6mg
D正确。
故选BD。
26</a0></v0时,小物块加速到vm时,支持力n=0,摩擦力为零,小物块脱离传送带做匀速运动。故b正确;><!--4n-->
展开阅读全文