1、数字时钟设计(毕业论文) 作者: 日期:21 个人收集整理 勿做商业用途1。设计目的设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分.其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。扩展功能部分则具有:定时控制、自动报整点时数和触摸报正点的功能.数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现.这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。并且要用数码管显示时、分、秒,各位均为两位显示,扩展部
2、分要有相应的响应电路。分则由扩展2。设计功能要求基本功能:(1)时的计时要求为“12翻1,分和秒的计时要求为60进制(2)准确计时,以数字形式显示时,分,秒的时间(3)校正时间扩展功能:(1)定时控制;(2)仿广播电台报时功能;(3)自动报整点时数;(4)触摸报整点时数;3。电路设计3。1设计方案根据设计要求首先建立了一个多功能 数字钟电路系统的组成框图,框图如图1所示.时显示器分显示器秒显示器时译码器分译码器秒译码器时计数器分计数器秒计数器校时电路振荡器分频器整点报时触摸报时仿电台报定时控制主体电路扩展电路图1由图1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。其
3、中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1的规律计数.计数器的输出经译码器送显示器。计时出现误差时电路进行校时、校分、校秒。扩展电路必须在主体电路正常运行的情况下才能进行扩展功能.3。2单元电路的设计数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等.在本次设计,电路是由许多单元电路组成的,因
4、此首先必须对各个单元电路进行设计。3。2.1 主体电路部分主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。下面将对各部分电路进行设计.3。2。1.1 振荡电路振荡电路由振荡器和分频器产生 1Hz时钟脉冲和扩展部分所需的频率,下面对振荡器和分频器两部分进行介绍。(1)振荡器数字电路中的时钟是由振荡器产生的,振荡器是数字钟的核心。振荡器的稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。它利用某种反馈方式产生时钟信号。对数字电路来说,振荡器的输出的幅度范围为0v5v的方波信号而不是锯齿波、三角波或其他形式。典型的振荡器是弛豫振荡器
5、,它通过一个RC网络将反相器的输出反馈回来并存在一定的工作延迟时间。基本的电路如图2所示。图2在上述电路中,RI-C网络由第一个反相器驱动,具有RC特性曲线的响应信号被反馈给反相器的输入.当电容上的电压达到施密特触发器输入反相器的门限电压的时候,反相器的状态发生改变,并输出一个新的电压值。这个输出电压经过一定的延迟时间再次通过RI-C反馈回来,直到电容电压再次达到门限电压为止.用施密特触发器输入器件(如74HC04),但是由于电容的参考电压在每个临界点都要发生变化,所以施密特触发器不是必需的。由于电容与输出相连,每次状态改变时,电容的充电电压会超过5V。从这一点来说,输出电压会改变电容的充电电
6、压,直到电容两端的电压变为74HC04的门限电压(2.5V)为止。振荡器输出状态的改变发生在电容上的电压达到2。5V时。弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电效应,是一个压电器件.当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最
7、多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。石英晶体的固有频率十分稳定。另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄.将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。在设计中所用的振荡器的电路图如图3所示。该电路能产生1MHz的方波脉冲振荡信号。图3(2)分频器分频器的作用是将由石英晶体产生的高频信号分频成基时钟脉冲信号
8、和扩展部分所需的频率.在此电路中,分频器的功能主要有两个:一是产生标准脉冲信号;二是功能扩展电路所需的信号,如仿电台用的1KHz的高频信号和500Hz的低频信号等.在此电路中作为分频器的元件是:CD4518.CD4518可以组成二分频电路和十分频电路。用CD4518组成二分频的电路如图4;用CD4518组成十分频的电路如图5;在本次设计中所用的分频器的电路图如图6。电路经过十分频后将晶振来的1MHz的振荡脉冲变为1Hz的脉冲信号,该信号作为计数器的计数脉冲使用。 Cr CPEN Cr CP输入 输 出 输入 输入 输 出清零图4 图5图6输入输出CKCREN上升沿LH加计数LL上升沿加计数下降
9、沿LX保 持XL上升沿上升沿LLHL下降沿XLX全为L上表:CD4518的功能表振荡器和分频器两部分构成振荡电路,它的电路图如图7所示。根据图7可知电路的工作原理是:石英晶体振荡器提供的频率为1MHz,CD4518组成十分频电路。并且一个 CD4518可以组成两个十分频电路即:CD4518的引脚2与引脚6组成一个十分频电路而引脚10与引脚14组成另一个十分频电路。晶振的输出接入第一块CD4518的输入引脚2,经过一次十分频,频率变为100KHz。输出引脚6接入同一块CD4518的引脚10经第二次分频,频率变为10KHz。输出引脚接人第二块CD4518的输入引脚2再经一次分频,频率变为1KHz.
10、这样经过六次分频最后可以得到1Hz的频率。图73.2.1。2 计数电路计数器是一种计算输入脉冲的时序逻辑网络,被计数的输入信号就是时序网络的时钟脉冲,它不仅可以计数而且还可以用来完成其他特定的逻辑功能,如测量、定时控制、数字运算等等。数字钟的计数电路是用两个六十进制计数电路和“12翻1”计数电路实现的。数字钟的计数电路的设计可以用反馈清零法。当计数器正常计数时,反馈门不起作用,只有当进位脉冲到来时,反馈信号将计数电路清零,实现相应模的循环计数。以六十进制为例,当计数器从00,01,02,59计数时,反馈门不起作用,只有当第60个秒脉冲到来时,反馈信号随即将计数电路清零,实现模为60的循环计数.
11、下面将分别介绍60进制计数器和“12翻1”小时计数器。 (一)60进制计数器电路如图8所示图8电路中,74LS92作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。当74LS90的14脚接振荡电路的输出脉冲1Hz时74LS90开始工作,它计时到10时向十位计数器74LS92进位。下面对电路中所用的主要元件及功能介绍。 十进制计数器 74LS90 74LS90是二-五-十进制计数器,它有两个时钟输入端CKA和CKB.其中,CKA和组成一位二进制计数器;CKB和组成五进制计数器;若将与CKB相连接,时钟脉冲从输入,则构成了8421BCD码十进制计数器.74L
12、S90有两个清零端R0(1)、R0(2),两个置9端R9(1)和R9(2),其BCD码十进制计数时序如表1,二五混合进制计数时序如表2,74LS90的管脚图如图9。R0(1)2R0(2)3R9(1)6R9(2)7CKA14QA12CKB1QB9QC8QD1174LS90图9表1 BCD码十进制计数时序 表2 二五混合进制计数时序CK00000100012001030011401005010160110701118100091001CK00000100012001030011401005100061001710108101191100 异步计数器74LS92所谓异步计数器是指计数器内各触发器的时
13、钟信号不是来自于同一外接输入时钟信号,因而触发器不是同时翻转。这种计数器的计数速度慢。一异步计数器 74LS92是 二六十二进制计数器,即CKA和组成二进制计数器,CKB和在74LS92中为六进制计数器.当CKB和相连,时钟脉冲从CKA输入,74LS92构成十六进制计数器。74LS92的管脚图如图10。R0(1)6R0(2)7CKA14QA12CKB1QB11QC9QD874LS92图10(二) “12翻1”小时计数器电路 (1) 电路如图11 所 示CLK3D2SD4CD1Q5Q674LS74AP015P11P210P39Q03Q12Q26Q37RC13TC12CLK14CE4U/D5PL1
14、174LS191456U9B74LS00123U9A74LS00111213U10D74LS00GNDR13.3K+5V89U8D74LS04+5vCP图11“12翻1”小时 计数器是按照“0102-0304-050607-080910111201”规律计数的,计数器的计数状态转换表如表3所示。表3“12翻1”小时计时时序十位 个位十位 个位CKQ10Q03 Q02 Q01 Q00CK Q10Q03 Q02 Q01 Q0001234567 000000000 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 189101112130001
15、1101 0 0 01 0 0 11 0 1 00 0 0 00 0 0 10 0 1 00 0 0 1(二)电路的工作原理由表可知:个位计数器由4位二进制同步可逆计数器 74LS191构成,十位计数器由双D触发器74LS74构成 ,将它们组成 “12翻1”小时计数器。由表可知:计数器的状态要发生 两次跳跃:一是:计数器计到9,即个位计数器的状态为 =1001后,在下一计数脉冲的作用下计数器进入暂态1010,利用暂态的两个1即使个位异步置0,同时向十位计数器进位使 =1;二是计数到12后,在第13个计数脉冲作用下个位计数器的状态应为 =0001,十位计数器的 =0。第二次跳跃的十位清“0和个位
16、置“1”的输出端、来产生.对电路中所用的主要元件及功能介绍。 D触发器74LS74在电路中用到了D触发器74LS74,74LS74的管脚图如图12。D2Q5Q6CLK341PRECLRA74LS74图12下面将介绍一些有关触发器的内容:触发器,它是由门电路构成的逻辑电路,它的输出具有两个稳定的物理状态(高电平和低电平),所以它能记忆一位二进制代码.触发器是存放在二进制信息的最基本的单元。按其功能可为基本RS触发器触、JK触发器、D触发器和T触发器.这几种触发器都有集成电路产品。其中应用最广泛的当数JK触发器和D触发器。不过,深刻理解RS触发器对全面掌握触发器的工作方式或动作特点是至关重要的。事
17、实上,JK触发器和D触发器是RS触发器的改进型,其中JK触发器保留了两个数据输入端,而D触发器只保留了一个数据输入端。D触发器有边沿D触发器和高电平D触发器。74LS74为一个电平D触发器。 计数器74LS191 74LS191的管脚图如图13 CTEN4D/U5CLK14LD11MAX/MIN12RCO13A15QA3B1QB2C10QC6D9QD774LS191图133。2。1。3 校时电路(一)电路如图14 所示8910U10C74LS00123U11A74LS00111213U10D74LS00R33.3kC10.01uFS1GND1011U8E74LS041HZS2/M2 Q2+5V
18、图14(二)电路的工作原理校时电路的作用是:当数字钟接通电源或者出现误差时,校正时间.校时是数字钟应具有的基本功能。一般电子表都具有时、分、秒等校时功能。为了使电路简单,在此设计中只进行分和小时的校时。校时有“快校时”和“慢校时两种,“快校时”是通过开关控制,使计数器对1Hz校时脉冲计数。“慢校时是用手动产生单脉冲作校时脉冲。图中S1校分用的控制开关,S2(总图)为校时用的控制开关,它们的控制功能如表4所示,校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为“0时可以进行“快校时”。如果校时脉冲由单次脉冲产生器提供,则可以进行“慢校时。 表4校时开关的功能S1S2功能11计数10校分00校
19、时表4(三)对电路中所用的主要元件及功能介绍在此电路中,用到的元器件有两块四2输入与非门74LS00 、一块六反相器74 LS04、两个电容、两个电阻以及两个开关。(1)四-2输入与非门74LS00集成逻辑门是数字电路中应用十分广泛最基本的一种器件,为了合理的使用和充分利用其性能,必须对它的主要参数和逻辑功能进行测试。74LS00与非门的主要参数为:输出高电平:指与非门有一个以上输入端接地或接低电平时的输出电平值。输出低电平:指与非门的所有输入端均接高电平时的输出电平值。开门电平:指与非门输出处于额定低电平时允许输入高电平的最小值。关门电平:指与非门输出处于高电平状态时允许输入低电平的最大值。
20、电压传输特性:是指门的输出电压随输入电压而变化的曲线,由它可以得到门电路的输出高电平、输出低电平、关门电平和开门电平等。低电平的输出电源电流;是指输入所有端都悬空,输出端空载时,电源提供器件的电流.高电平输出电源电流:是指输出端空载,每个门各有一个以上的输入端接地,电源提供给器件的电流.低电平输入电流:是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流值。高电平输入电流:指被测输入端接高电平,其余输入端接地,流入被测输入端的电流值。扇出系数:门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL与非门有两种不同性质的负载,即灌电流负载和拉电流负载,因此有两种扇出系数。即低
21、电平扇出系数和高电平扇出系数.3。2.1.4 译码与显示电路(一)电路如图15所示BI/RBO4RBI5LT3A7B1C2D6a13b12c11d10e9f15g1474LS48abfcgdeDPYLEDgn1234567abcdefgDPY_7-SEG图15(二)电路的工作原理译码是编码的相反过程,译码器是将输入的二进制代码翻译成相应的输出信号以表示编码时所赋予原意的电路。常用的集成译码器有二进制译码器、二十制译码器和BCD7段译码器、显示模块用来显示计时模块输出的结果.(三)对电路中的主要元件及功能介绍(1)译码器74LS48译码器是一个多输入、多输出的组合逻辑电路。它的工作是把给定的代码
22、进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数字分配,存储器寻址和组合控制信号等.译码器可以分为通用译码器和显示译码器两大类。在电路中用的译码器是共阴极译码器74LS48,用74LS48把输入的8421BCD码ABCD译成七段输出a-g,再由七段数码管显示相应的数。 74LS48的管脚图如图16.在管脚图中,管脚LT、RBI、BI/RBO都是低电平是起作用,作用分别为:LT为灯测检查,用LT可检查七段显示器个字段是否能正常被点燃.BI是灭灯输入,可以使显示灯熄灭。RBI是灭零输入,可以按照需要将显示的
23、零予以熄灭。BI/RBO是共用输出端,RBO称为灭零输出端,可以配合灭零输出端RBI,在多位十进制数表示时,把多余零位熄灭掉,以提高视图的清晰度.也可用共阴译码器74LS248,CD4511。BI/RBO4RBI5LT3A7B1C2D6a13b12c11d10e9f15g1474LS48图16(2)显示器SM421050N在此电路图中所用的显示器是共阴极形式,阴极必须接地.SM421050N的管脚功能图如图17abfcgdeDPYLEDgn1234567abcdefgDPY_7-SEG图17主体电路部分是由上面的以上的各个单元电路组成的.3.2。2扩展功功能电路的设计3.2。2.1定时控制电路
24、数字钟在指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通或断开“控制”。不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。(一)设计电路如图18所示图18(二)电路的工作原理在这里将举例来说明它的工作原理.要求上午7时59分发出闹时信号,持续1分钟。设计如下:7时59分对应数字钟的时时个位计数器的状态为,分十位计数器的状态为,分个位计数器的状态为,若将上述计数器输出为“1的所有输出端经过与门电路去控制音响电路,就可以使音响电路正好在7点59分响,持续1分钟后(即8点)停响。所以闹时控制信号Z的表达式为式中,M为上午的信号输出,要求M=1.如果
25、用与非门实现的逻辑表达式为:在该电路图中用到了4输入二与非门74LS20,集电极开路的2输入四与非门74LS03,因OC门的输出端可以进行“线与”,使用时在它们的输出端与电源+5V端之间应接一电阻RL。RL的值由下式决定: =0。4V,=0.4mA,=2。4V,=50uA,=8mA,=100Ua;m为负载门输入端总个数。取RL=3。3K。如果控制1KHz高音和驱动音响电路的两极与非门也采用OC门,则RL的值应该重新计算。由电路图可以看见,上午7点59分,音响电路的晶体管导通,则扬声器发出1KHz的声音。持续1分钟到8点整晶体管因为输入端为“0”而截止,电路停闹。(三)对电路中所用的主要元件及功
26、能介绍在电路中所用到的元件有74LS03,74LS20等。(1)四2输入与非门74LS03,只要输入变量有一个为0则输出为1,只有输入全为1,输出才为0.74LS03的管脚图如图19 A图19123&74LS03(2)二4输入与非门74LS20,四个输入端有一个为0,则输出为1,只有全部输入为1,输出才为0。74LS20的管脚图如图20所示。12456&A74LS20图204。调试在本设计中,为了设计的顺利进行,我在实验箱上进行了部分调试,因为电路太复杂,在实验箱上不可能整体电路进行调试。调试后,我就自己焊接了一个试验板进行调试。以确保最后能很好的完成其各部分功能。调试后,我就画PCB图,用来
27、制印制板.因为PCB图先画,后经过反复考虑振荡电路部分改进了,最后用的是1MHZ的晶振经过三片CD4518六次分频就能得到1HZ的频率。所以在印制板外加了一个振荡部分电路。4。1主体电路部分 振荡电路部分我先用的是32768HZ的晶振和反向器74LS00接两个电阻和两个电容组成的振荡电路,产生32768HZ的方波信号,经过15级二分频后得到1HZ的基准脉冲。扩展部分所需的频率可以从5级二分频得到1024HZ六级二分频得到512HZ但是这样用的集成块较多,时间延迟较长。用555产生多谐振荡方波也可,就是精确度和稳定度不高。后来我就用的1MHZ的晶振产生1MHZ的频率经过74LS90组成的二-五-
28、十的分频器,可很好的扩展部分所需的频率。只是要用六块74LS90,后来我查了手册,发现4518有两片十进制分频器,功能与74LS90又基本上相同,这样就可少用集成块,减少时间延时。在现用电路调试中,晶振的输出频率为1MHz,用三片CD4518组成了六级十分频电路,在调试中我对每级分路进行了测试。在第一级分频后出现的脉冲信号为100KHz,经过第二级得到了10KHz的标准脉冲,这样一级级的分频,经过六次分频后得到了标准的1Hz脉冲信号。计数电路部分(1)小时计数部分这部分电路较复杂,在第一次焊接完成后的调试显示中,发现小时的十位没有变化,经过分析、检查发现74LS74的3脚没有接上。(2)秒计数
29、电路部分这部分的调试中顺利得到了结果即:秒计数器的个位能准确以十进制形式计数;秒计数器的十位也能准确以六进制的形式计数。当秒计数器的个位计数到9后自动向秒计数器的十位计数.(3)分计数电路部分这部分的调试电路与秒计数器的电路一样,在调试中不同的是秒计数电路的个位计数器74LS90的14脚接入振荡电路部分的输出端,而分计数电路的个位计数器74LS90的14脚本该接校时电路,但是由于校时电路作为最后调试的电路, 所以在调试中74LS90的14脚与单次脉冲连接。调试的结果是:这部分的结果与秒计数电路部分的结果一样。校时电路部分在整个电路的设计中,需要用到两个校时电路,两个校时电路的功能相同,它们不同
30、的是在电路的设计时,校分电路比校时电路少一个反相器,这是因为74LS191为高电平有效而74LS90为低电平有效。调试的结果是:当开关断开时,分计数电路,小时计数电路正常计数,当开关闭合时,校时电路进行校时。只是有时松开按键时,较时数会有点误变化,经过仔细分析,确定是由于在松按键时产生了抖动,如果接上RS触发器就能够消抖。器。显示译码器:七段显示器,它由ag七个光段,从09十个数码将有其中不同的光段组合而成。半导体七段显示器的每个光段都是一个发光二极管。发光二极管和普通二极管一样,具有单向导电性,当外加反向电压时,处于截止状态;当外加正向电压而且足够大时,才处于导通状态,而当正向电流足够大时才
31、能发光。如下图所示:发光二极管发光二极管的驱动电路,其中门电路均为集电极开路门(OC).当门处于导通状态(即输出为低电平)时,发光二极管因正向电压太低而不可能发光;当门处于截止状态时(即输出电平为高电平)时,只要电阻R取值得当,发光二极管就会有足够大的正向电流而发光,可见该电路为高电平驱动当门电路处于导通状态(即输处为低电平)时,只要电阻R取值得当,发光二极管就会有足够的正向电流,因而发光;当处于截止状态(即输处为高电平)时,发光二极管正向电压过小不足以使其导通,因而不会发光。则该电平为低电平驱动. 集成十进制异步计数器74LS90的功能:(1)异步清零功能.当R0=R0(2),R0(1)=0时,若R9=R9(1),R9(2)=0时,则计数器清零,并与CK无关.(2)异步置9功能。当R0=R0(2),R0(1)=1时,计数器置9,即被置成1001的状态,置9功能也于CK无关。(3)计数功能,当R0=0,R9=0时计数器计数。根据不同接法,还可实现二进制、五进制。