资源描述
与圆有关的证明及计算
1.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
2.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
3.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
4.如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
5.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,
(1)求证:CB∥PD;
(2)若BC=3,sin∠P=,求⊙O的直径.
6.如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.
7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.
8.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
9.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
10.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的长.
圆的动态探究题
11.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向中点F,G运动.连接PB,QE,设运动时间为t(s).
(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t= s时,四边形PBQE为菱形;
②当t= s时,四边形PBQE为矩形.
12.如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.
(1)若AC=5,则当t= 时,四边形AMQN为菱形;当t= 时,NQ与⊙O相切;
(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.
13.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线;
(2)若BC=2,E是半圆上一动点,连接AE、AD、DE.
填空:
①当的长度是 时,四边形ABDE是菱形;
②当的长度是 时,△ADE是直角三角形.
14.如图,点A,B,C分别是⊙O上的点,且∠B=60°,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)若AC=3,填空:
①当的长为 时,以A,C,B,D为顶点的四边形为矩形;
②当的长为 时,△ABC的面积最大,最大面积为 .
15.四边形ABCD的对角线交于点E,且AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,且直径AB=8.
①△ABD的面积为 .②的长 .
16.在圆O中,AC是圆的弦,AB是圆的直径,AB=6,∠ABC=30°,过点C作圆的切线交BA的延长线于点P,连接BC.
(1)求证:△PAC∽△PCB;
(2)点Q在半圆ADB上运动,填空:
①当AQ= 时,四边形AQBC的面积最大;
②当AQ= 时,△ABC与△ABQ全等.
17.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若直径AB=12cm,∠CAB=30°,
①当E是半径OA中点时,切线长DC= cm:
②当AE= cm时,以A,O,C,F为顶点的四边形是菱形.
18.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)填空:①当CE= 时,四边形AOCE为正方形;
②当CE= 时,△CDE为等边三角形.
19.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.
(1)试判断四边形DEFG的形状,并说明理由;
(2)填空:
①若AB=3,当CA=CB时,四边形DEFG的面积是 ;
②若AB=2,当∠CAB的度数为 时,四边形DEFG是正方形.
20.如图,在△ABC中,AB=AC,点O为边AB的中点,OD⊥BC于点D,AM⊥BC于点M,以点O为圆心,线段OD为半径的圆与AM相切于点N.
(1)求证:AN=BD;
(2)填空:点P是⊙O上的一个动点,
①若AB=4,连结OC,则PC的最大值是 ;
②当∠BOP= 时,以O,D,B,P为顶点四边形是平行四边形.
1.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
【解答】(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
则AC=15(cm).
∴⊙O的半径是7.5cm.
2.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
【解答】(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴
∴BF==
3.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
【解答】(1)证明:连接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.
∵AE⊥CE,
∴AE⊥OA.
∴AE是⊙O的切线.
(2)解:∵BD是直径,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的长是1cm,
∴BD的长是4cm.
4.如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
【解答】(1)证明:连接OD交于AB于点G.
∵D是的中点,OD为半径,
∴AG=BG.
∵AO=OC,
∴OG是△ABC的中位线.
∴OG∥BC,
即OD∥CE.
又∵CE⊥EF,
∴OD⊥EF,
∴EF是⊙O的切线.
(2)解:在Rt△CEF中,CE=6,EF=8,
∴CF=10.
设半径OC=OD=r,则OF=10﹣r,
∵OD∥CE,
∴△FOD∽△FCE,
∴,
∴=,
∴r=,
即:⊙O的半径为.
5.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,
(1)求证:CB∥PD;
(2)若BC=3,sin∠P=,求⊙O的直径.
【解答】(1)证明:∵∠C=∠P
又∵∠1=∠C
∴∠1=∠P
∴CB∥PD;
(2)解:连接AC
∵AB为⊙O的直径,
∴∠ACB=90°
又∵CD⊥AB,
∴=,
∴∠P=∠CAB,
又∵sin∠P=,
∴sin∠CAB=,
即=,
又知,BC=3,
∴AB=5,
∴直径为5.
6.如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.
【解答】(1)证明:连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵DE是⊙O的切线,
∴∠ODE=90°,OD⊥DE,
又∵DE⊥EF,
∴OD∥EF,
∴∠ODA=∠DAE,
∴∠DAE=∠OAD,
∴AD平分∠CAE;
(2)解:连接CD,
∵AC是⊙O直径,
∴∠ADC=90°,
在Rt△ADE中,DE=4cm,AE=2cm,
∴根据勾股定理得:AD=cm,
由(1)知:∠DAE=∠OAD,∠AED=∠ADC=90°,
∴△ADC∽△AED,
∴,即,
∴AC=10,
∴⊙O的半径是5.
7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.
【解答】(1)证明:连接OD,OE,BD,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=CE,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC﹣DC=6.
8.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
【解答】(1)证明:∵AC为直径,
∴∠ADC=90°,
∴∠A+∠DCA=90°,
∵∠ACB=90°,
∴∠DCB+∠ACD=90°,
∴∠DCB=∠A;
(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;
解:连接DO,
∵DO=CO,
∴∠1=∠2,
∵DM=CM,
∴∠4=∠3,
∵∠2+∠4=90°,
∴∠1+∠3=90°,
∴直线DM与⊙O相切,
故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.
9.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
【解答】(1)证明:连接OD,
∵PD切⊙O于点D,
∴OD⊥PD,
∵BE⊥PC,
∴OD∥BE,
∴∠ADO=∠E,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠E,
∴AB=BE;
(2)解:由(1)知,OD∥BE,
∴∠POD=∠B,
∴cos∠POD=cosB=,
在Rt△POD中,cos∠POD==,
∵OD=OA,PO=PA+OA=2+OA,
∴,
∴OA=3,
∴⊙O半径=3.
10.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的长.
【解答】(1)证明:PA,PC与⊙O分别相切于点A,C,
∴∠APO=∠EPD且PA⊥AO,
∴∠PAO=90°,
∵∠AOP=∠EOD,∠PAO=∠E=90°,
∴∠APO=∠EDO,
∴∠EPD=∠EDO;
(2)解:连接OC,
∴PA=PC=6,
∵tan∠PDA=,
∴在Rt△PAD中,AD=8,PD=10,
∴CD=4,
∵tan∠PDA=,
∴在Rt△OCD中,OC=OA=3,OD=5,
∵∠EPD=∠ODE,
∴△DEP∽△OED,
∴===2,
∴DE=2OE
在Rt△OED中,OE2+DE2=OD2,即5OE2=52,
∴OE=.
11.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向中点F,G运动.连接PB,QE,设运动时间为t(s).
(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t= 2 s时,四边形PBQE为菱形;
②当t= 0或4 s时,四边形PBQE为矩形.
【解答】(1)证明:∵正六边形ABCDEF内接于⊙O,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF∠F,
∵点P,Q同时分别从A,D两点出发,以1cm/s速度,运动时间为t(s),
∴AP=DQ=t,则PF=QC=4﹣t,
在△ABP和△DEQ中
∴△ABP≌△DEQ(SAS)
∴BP=EQ,
同理可证,PE=QB,
∴四边形PEQB是平行四边形.
(2)解:①当四边形PBQE为菱形时,PB=PE=EQ=QB,
∴△ABP≌△DEQ≌△PFE≌△QCB,
∴AP=PF=DQ=QC,
即t=4﹣t,得t=2,
故答案为:2;
②当t=0时,∠EPF=∠PEF=30°,
∴∠BPE=120°﹣30°=90°,
∴此时四边形PBQE为矩形;
当t=4时,∠ABP=∠APB=30°,
∴∠BPE=120°﹣30°=90°,
∴此时四边形PBQE为矩形.
故答案为:0或4.
12.如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.
(1)若AC=5,则当t= 时,四边形AMQN为菱形;当t= 时,NQ与⊙O相切;
(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.
【解答】解:(1)AP=t,CQ=t,则PQ=5﹣2t,
∵NM⊥AB,
∴PM=PN,
∴当PA=PQ时,四边形AMQN为菱形,即t=5﹣2t,解得t=;
当∠ONQ=90°时,NQ与⊙O相切,如图,
OP=t﹣1,OQ=AC﹣OA﹣QC=5﹣1﹣t=4﹣t,
∵∠NOP=∠QON,
∴Rt△ONP∽Rt△OQN,
∴=,即=,
整理得t2﹣5t+5=0,解得t1=,t2=(1≤t≤2.5,故舍去),
即当t=时,NQ与⊙O相切;
故答案为,;
(2)当AC的长为3时,存在t=1,使四边形AMQN为正方形.理由如下:
∵四边形AMQN为正方形.
∴∠MAN=90°,
∴MN为⊙O的直径,
而∠MQN=90°,
∴点Q在⊙O上,
∴AQ为直径,
∴点P在圆心,
∴MN=AQ=2,AP=1,
∴t=AP=1,CQ=t=1,
∴AC=AQ+CQ=2+1=3.
13.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线;
(2)若BC=2,E是半圆上一动点,连接AE、AD、DE.
填空:
①当的长度是 π 时,四边形ABDE是菱形;
②当的长度是 π或π 时,△ADE是直角三角形.
【解答】(1)证明:连接OD,如图,
∵∠BAC=90°,点D为BC的中点,
∴DB=DA=DC,
∵∠B=60°,
∴△ABD为等边三角形,
∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,
而OA=OD,
∴∠ODA=∠OAD=30°,
∴∠ODB=60°+30°=90°,
∴OD⊥BC,
∴BD是⊙O的切线;
(2)解:①∵△ABD为等边三角形,
∴AB=BD=AD=CD=,
在Rt△ODC中,OD=CD=1,
当DE∥AB时,DE⊥AC,
∴AD=AE,
∵∠ADE=∠BAD=60°,
∴△ADE为等边三角形,
∴AD=AE=DE,∠ADE=60°,
∴∠AOE=2∠ADE=120°,
∴AB=BD=DE=AE,
∴四边形ABDE为菱形,
此时的长度==π;
②当∠ADE=90°时,AE为直径,点E与点F重合,此时的长度==π;
当∠DAE=90°时,DE为直径,∠AOE=2∠ADE=60°,此时的长度==π,
所以当的长度为π或π时,△ADE是直角三角形.
故答案为π;π或π.
14.如图,点A,B,C分别是⊙O上的点,且∠B=60°,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)若AC=3,填空:
①当的长为 π 时,以A,C,B,D为顶点的四边形为矩形;
②当的长为 π 时,△ABC的面积最大,最大面积为 .
【解答】(1)证明:连接OA.
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠ACP=∠CAO=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,
∴AP是⊙O的切线,
(2)①连接AD,∵∠ADC=∠B=60°,CD是直径,
∴∠DAC=90°,∵AC=3,
∴AD=,CD=2,OC=,
当AB是直径时,四边形ADBC是矩形,此时==π.
②∵∠B=60°,
∴当BA=BC时,△ABC的面积最大,此时△ABC是等边三角形,
∴==π,S△ABC=×32=.
15.四边形ABCD的对角线交于点E,且AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,且直径AB=8.
①△ABD的面积为 16 .
②的长 π .
【解答】解:(1)∵AE=EC,BE=ED,
∴四边形ABCD是平行四边形.
∵AB为直径,且过点E,
∴∠AEB=90°,即AC⊥BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
(2)①连结OF.
∵CD的延长线与半圆相切于点F,
∴OF⊥CF.
∵FC∥AB,
∴OF即为△ABD中AB边上的高.
∴S△ABD=AB×OF=×8×4=16,
∵点O是AB中点,点E是BD的中点,
∴S△OBE=S△ABD=4.
②过点D作DH⊥AB于点H.
∵AB∥CD,OF⊥CF,
∴FO⊥AB,
∴∠F=∠FOB=∠DHO=90°.
∴四边形OHDF为矩形,即DH=OF=4.
∵在Rt△DAH中,sin∠DAB==,
∴∠DAH=30°.
∵点O,E分别为AB,BD中点,
∴OE∥AD,
∴∠EOB=∠DAH=30°,
∴的长度==π.
故答案为:16,π.
16.在圆O中,AC是圆的弦,AB是圆的直径,AB=6,∠ABC=30°,过点C作圆的切线交BA的延长线于点P,连接BC.
(1)求证:△PAC∽△PCB;
(2)点Q在半圆ADB上运动,填空:
①当AQ= 3 时,四边形AQBC的面积最大;
②当AQ= 3或3 时,△ABC与△ABQ全等.
【解答】(1)证明:如图1所示,连接OC.
∵PC是圆O的切线,OC是半径,
∴OC⊥PC,
∴∠PCO=90°
∴∠PCA+∠ACO=90°,
∵AB是直径,
∴∠ACB=90°,
∴∠B+∠CAB=90°,
∵OC=OA,
∴∠OAC=∠OCA,
∴∠B+∠OCA=90°,
∴∠PCA=∠B,
又∵∠P=∠P,
∴△PAC∽△PCB;
(2)解:①当点Q运动到OQ⊥AB时,四边形AQBC的面积最大;
如图2所示:连接AQ、BQ,
∵OA=OB,OQ⊥AB,
∴OQ=BQ,
∵AB是直径,
∴∠AQB=90°,
∴△ABQ是等腰直角三角形,
∴AQ=AB=3,
故答案为:3;
②如图3所示:∵∠ACB=90°,∠ABC=30°,
∴AC=AB=3,BC=AC=3,
分两种情况:
a.当AQ=AC=3时,
在Rt△ABC和Rt△ABQ中,,
∴△ABC≌△ABQ(HL);
b.当AQ=BC=3时,同理△ABC≌△BAQ;
综上所述:当AQ=3或3时,△ABC与△ABQ全等.
17.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若直径AB=12cm,∠CAB=30°,
①当E是半径OA中点时,切线长DC= 4 cm:
②当AE= 3 cm时,以A,O,C,F为顶点的四边形是菱形.
【解答】解:(1)连接OC.
∵CD是⊙O的切线,
∴∠OCD=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∵PE⊥AB,
∴∠PEA=90°,
∴∠OAC+∠APE=90°,∠OCA+∠PCD=90°,
∴∠APE=∠PCD,
∵∠APE=∠CPD,
∴∠PCD=∠CPD,
∴DC=DP.
(2)①连接BC,
∵AB是直径,
∴∠ACB=90°
∵∠A=30°,AB=12,
∵AC=AB•cos30°=6,
在Rt△APE中,∵AE=OA=3,
∴AP=AE÷cos30°=2,
∴PC=AC﹣AP=4,
∵∠APE=∠DPC=60°,DP=DC,
∴△DPC是等边三角形,
∴DC=4,
故答案为4.
②当AE=EO时,四边形AOCF是菱形.
理由:连接AF、OF.
∵AE=EO,FE⊥OA,
∴FA=FO=OA,
∴△AFO是等边三角形,
∴∠FAO=60°,∵∠CAB=30°,
∴∠FAC=30°,∠FOC=2∠FAC=60°,
∴△FOC是等边三角形,
∴CF=CO=OA=AF,
∴四边形AOCF是菱形,
∴AE=3cm时,四边形AECF是菱形.
故答案为3.
18.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)填空:①当CE= 2 时,四边形AOCE为正方形;
②当CE= 时,△CDE为等边三角形.
【解答】(1)证明:连接AC、OE,如图(1),
∵AB为直径,
∴∠ACB=90°,
∴△ACD为直角三角形,
又∵E为AD的中点,
∴EA=EC,
在△OCE和△OAE中,
,
∴△OCE≌△OAE(SSS),
∴∠OCE=∠OAE=90°,
∴CE⊥OC,
∴CE是⊙O的切线;
(2)解:①C在线段BD的中点时,四边形AOCE为正方形.理由如下:
当C为边BD的中点,而E为AD的中点,
∴CE为△BAD的中位线,
∴CE∥AB,CE=AB=OA,
∴四边形OAEC为平行四边形,
∵∠OAE=90°,
∴平行四边形OCEA是矩形,
又∵OA=OC,
∴矩形OCEA是正方形,
∴CE=OA=2,
故答案为:2;
②连接AC,如图(2),
∵△CDE为等边三角形,
∴∠D=60°,∠ABD=30°,CE=CD,
在Rt△ABC中,AC=AB=2,
在Rt△ACD中,∵tan∠D=,
∴CD===,
∴CE=,
故答案为:.
19.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.
(1)试判断四边形DEFG的形状,并说明理由;
(2)填空:
①若AB=3,当CA=CB时,四边形DEFG的面积是 ;
②若AB=2,当∠CAB的度数为 75°或15° 时,四边形DEFG是正方形.
【解答】解:(1)四边形DEFG是平行四边形.
∵点D、E、F、G分别是CA、OA、OB、CB的中点,
∴DG∥AB,DG=AB,EF∥AB,EF=AB,
∴DG∥EF,DG=EF,
∴四边形DEFG是平行四边形;
(2)①连接OC.
∵CA=CB,
∴=,
∴DG⊥OC,
∵AD=DC,AE=EO,
∴DE∥OC,DE=OC=1,同理EF=AB=,
∴DE⊥DG,
∴四边形DEFG是矩形,
∴四边形DEFG的面积=.
故答案为;
②当C是优弧AB的中点时,四边形DEFG是正方形,此时∠CAB=75°,
当C是劣弧AB的中点时,四边形DEFG是正方形,此时∠CAB=15°,
故答案为75°或15°.
20.如图,在△ABC中,AB=AC,点O为边AB的中点,OD⊥BC于点D,AM⊥BC于点M,以点O为圆心,线段OD为半径的圆与AM相切于点N.
(1)求证:AN=BD;
(2)填空:点P是⊙O上的一个动点,
①若AB=4,连结OC,则PC的最大值是 2+ ;
②当∠BOP= 45°或135° 时,以O,D,B,P为顶点四边形是平行四边形.
【解答】(1)证明:如图1中,连接ON.
∵AM是⊙O的切线,
∴ON⊥AM,
∵OD⊥BC,AM⊥BC,
∴∠ODM=∠ONM=∠DMN=90°,
∴四边形ODMN是矩形,
∵OD=ON,
∴四边形ODMN是正方形,
∴OD=ON=DM=MN,
∵OA=OB,OD∥AM,ON∥BM,
∴BD=DM,AN=MN,
∴BD=AN;
(2)①如图2中,连接OC、PC.
∵PC≤OC+OP,
∴当点P在CO的延长线时,P、O、C共线时,PC的值最大,最大值为OC+OP.
由(1)可知,BM=AM,∠AMB=90°,
∴∠B=45°,
∵AB=AC=4,
∴△ABC是等腰直角三角形,BM=AM=MC=2,OP=OD=BD=DM=,
∴OA=2,OC==2,
∴PC的最大值为2+;
②如图3中,
由题意以O,D,B,P为顶点四边形是平行四边形
当OB为对角线时,OP∥BD,可得∠BOP=∠ABC=45°,
当OB为边时,OP′∥BC,可得∠BOP′=180°﹣∠ABC=135°.
综上所述,当∠POB=45°或135°时,以O,D,B,P为顶点四边形是平行四边形;
展开阅读全文