资源描述
人教版五年级上册数学应用题附答案
1.昆明市供电局对居民用电采取年累计阶梯电价收费。收费标准如下表:
年阶梯电量
年阶梯电价
每年0~1560度
每度0.36元
每年1561~3600度
每度0.45元
每年3601~4680度
每度0.50元
每年超过4680度
每度0.80元
李老师家去年共用电1862度,应缴电费多少元?
(1)请你判断4位同学的解法,对的在□内打“√”,错的在□内打“×”
(2)在你认为正确的解法中,你最喜欢谁的解法?请你用文字说明这种解法的思路。
2.李奶奶家每天需要2袋牛奶,零买一个月(一个月按30天计算)比整月订贵多少钱?
3.藏羚羊的奔跑速度大约可达到每分钟1.33千米,非洲猎豹的速度大约是藏羚羊的1.3倍,非洲猎豹的速度每分钟大约是多少千米?(得数保留两位小数)
4.王叔叔在加油站加了25升汽油,每升汽油可行驶6.4km。他要去距离加油站75km的地方,往返一次,加的这些汽油够吗?
5.某出租车公司的出租车收费标准如下表。
里程
收费
3千米以内(含3千米)
6.00元
3千米以上,每1千米
2.80元
芳芳乘出租车去距离她家7千米的外婆家,应付多少车费?
6.包子铺的早餐有三文治、包子、奶茶、煎鸡蛋和粥等。
(1)妈妈买了2个三文治和4个煎鸡蛋,共需要多少钱?
(2)请你为自己选一份健康、科学的早餐,并计算一共需要多少钱。
先在下面编一道题目:
再在下面解答:
7.下面框里是张叔叔每月养车费用的记录单。
记录单A.保养平均每月260元:
B.保养美容和保修平均每月180元;
C.目前每升汽油的价格是6.70元;
D.每千米大约耗油0.08升;
E.每月平均行驶1000千米;F.每月停车费大约120元。
(1)张叔叔想计算出每月加油共需要多少钱?他需要用到记录单上的哪些信息?请把所选信息前面的字母用“○”圈出来。
(2)根据你选出的信息,计算出张叔叔每月加油一共需要多少元钱?
8.面粉每千克5.5元,大米每千克6.4元,买面粉和大米各15千克,支付200元,应找回多少元?
9.张老师从九龙鼎坐出租车到龙门游玩,到达龙门时显示里程数为13.9千米。他所乘坐的出租车2千米以内收费6元,超过2千米,每千米收费1.5元,不足1千米的按1千米算,张老师需付多少钱?
10.王叔叔把每月车辆保养、使用的相关信息记录如下。
(1)王叔叔想计算出每月加油共需多少钱,他需要用到记录单上的哪些信息?请你在这些信息前面的字母上打“√”。
(2)根据你选出的信息,计算出王叔叔每月加油所需要的钱数。
11.一种山地自行车,0.8小时行了21.36千米,照这样的速度,2.4小时可以行驶多少千米?
12.妈妈到水果店买水果,买香蕉用了15.8元,比2千克苹果多花了2.4元,每千克苹果多少钱?
13.甲乙两车从相距450千米的两地同时出发相向而行,经过3小时后相遇。此时甲车已经超过两地中点45千米。请问甲、乙车每小时各行驶多少千米?
14.甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,现在甲池中的水比乙池少4吨。
(1)现在两个水池中共存水多少吨?
(2)原来乙池中存水多少吨?
15.春节快到了,某超市购买了一批中国结用于节日装饰。其中小中国结有540只,比购进的大中国结的4倍少60只,超市购进多少只大中国结?(用方程解答)
16.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答)
17.请问:今年大头儿子几岁?(用方程解答)
18.妈妈去超市购物,她买了苹果和香蕉各4千克,共花了59.2元。已知每千克苹果11.2元,那么每千克香蕉多少元?
19.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答)
画线段图:
20.下图是小宁家的客厅和厨房的平面图。
(1)用含有字母的式子表示小宁家的客厅和厨房的总面积。
(2)当a=8时,小宁家的客厅和厨房的总面积是多少平方米?
21.“腹有诗书气自华,读书万卷始通神。”林林是个非常爱读书的孩子,他攒钱想买5本一套的《玩转科学》丛书,一套售价95元。林林攒够了钱去新华书店买书,刚好碰上书店促销,这套丛书现在只售77元。林林就用剩下的钱买了4个笔记本。每个笔记本多少元?
22.果园里有520千克樱桃,要用最多可以装12千克的纸箱运走,至少需要多少个这样的纸箱才能全部运完?
23.王奶奶带了270元钱去购买月饼。
(1)这些钱最多可以买几个月饼?
(2)买包装盒子至少需要多少钱?
24.小华和妈妈去超市买了3盒牙膏和2袋洗衣粉,一共花了30.9元,一盒牙膏5.1元,一袋洗衣粉多少钱?
25.两台播种机1.8小时播种5.4公顷,那么每台播种机每小时播种多少公顷?
26.每份报纸的批发价是0.75元,零售价是1元。晓刚星期天准备卖报纸赚到50元钱捐给希望小学,他至少要卖出多少份报纸?
27.修路队叔叔为我们村子修公路,如果每天修3.5千米,那么25千米的公路,至少需要几天修完?
28.9米彩带可以包扎5个礼盒,一根32.5米长的彩带最多可以包扎几个礼盒?
29.奇奇带20元钱去买文具,每张彩纸0.4元,每支铅笔1.2元。奇奇买了5支铅笔,剩下的钱买彩纸,还可以买几张?
30.小林家和小云家相距1.8千米,周日早上9:00两人同时从家骑自行车相向而行,在途中相遇。(如下图)
(1)从上图看,( )的速度快一些。
(2)小林每分钟行0.25千米,小云每分钟行多少千米?
31.同学们到公园去划船,大船每条坐4人,小船每条坐2人,共租了18条大船和小船,正好坐满。
(1)划船的同学可能是51人吗?为什么?
(2)如果划船的同学正好是60人,那么大船、小船各租了多少条?
32.用一根15.6分米的铁丝刚好围成一个等腰梯形,已知这个梯形的一条腰长4.1分米,面积是12.95平方分米,这个梯形的高是多少分米?
33.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗?
34.如图,靠墙边围一个花坛,围花坛的篱笆长46m。求这个花坛的面积。
35.某公园有一块梯形草坪(如图),绿化队计划把它扩建成一个长方形。受条件限制,扩建时只把梯形草坪的上底延长,下底和高不变。
①扩建后,面积比原来增加了多少平方米?(提示可以在图上画一画!)
②在扩建的部分铺草坪,草坪的单价是7.8元/m2,购买草坪的预算是1600元。预算的钱够不够?
36.一批同样的圆木堆成的横截面是梯形,上层是5根,下层是10根,一共堆6层,这堆圆木共多少根?如果这批圆木共重26.1吨,每根圆木重多少吨?
37.下面是一块荒地平面图.
(1)这块荒地如果种花椒,大约可以种多少株?如果种桑树呢?
(2)如果每株桑树上的桑叶养的蚕可卖3.5元,每株花椒树上的花椒可卖15元,你觉得种什么树比较划算?算算看,将过程写在下面.
38.如下图所示,梯形ABCD的面积是60平方米,高是8米,三角形ADE的面积是5平方米,BC=10米,求阴影部分的面积。
39.如图,ABCD是平行四边形,AB=4BE,BC=3BF。△BEF的面积是12cm2,平行四边形ABCD的面积是多少cm2。
40.如下图,同一直线上的直角梯形和长方形相距10cm。直角梯形上底2cm,下底4cm,高6cm。长方形长26cm,宽6cm。现在直角梯形按每秒2cm匀速向右平移。
(1)画出直角梯形平移6秒钟后的位置,并算一算这时它与长方形重叠部分的面积是多少平方厘米?
(2)想一想,算一算,在直角梯形平移过程中,整个直角梯形与长方形完全重叠的时间维持了几秒?
41.甲车和乙车从相距的两座城市同时出发,相向而行,经过4.2小时相遇。已知乙车每小时行驶比甲车快。甲车每小时行多少千米?(列方程解答)
42.甲、乙两地相距570km,小客车和卡车同时从两地相向而行,3小时后两车相遇,小客车的速度是卡车速度的,两车的速度分别是多少?
43.欣欣果园有桃树和梨树共480棵,其中桃树的棵树是梨树的3倍,桃树和梨树各有多少棵?(列方程解答)
44.小敏和小刚都是集邮爱好者。小敏现在的邮票张数是小刚邮票张数的,如果小刚给小敏9张邮票,那么他们两人的邮票张数就相等,你知道小刚有多少张邮票吗?(用方程解答)
45.五(1)班男、女生各多少人?
46.“夏至”是一年中白昼最长,黑夜最短的一天。这天苏州白昼的时间大约是黑夜的1.4倍,那么这天苏州的白昼时间大约是多少小时?(用方程解)
47.甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,现在甲池中的水比乙池少4吨。
(1)现在两个水池中共存水多少吨?
(2)原来乙池中存水多少吨?
48.同学们去参观历史博物馆,四年级和五年级共去了480人,其中五年级去的人数是四年级的3倍。四年级的参观人数是多少?
49.小明和小芳是集邮爱好者,小明的邮票数量是小芳的5倍,如果小明给小芳38张,他们的邮票数量正好相等,小明和小芳原来各有多少张邮票?(用方程解)
50.一块梯形地的面积是450平方米,它的下底是40米,高15米。它的上底是多少米?(只列式不解答)
51.一块花布(如下图)共绣了5朵花,每朵花的宽都是5.4cm,每两朵花之间的距离是1.6cm,这块花布一共长多少厘米?
52.买75千克苹果,怎样买合算?至少需要多少钱?
53.某市按照以下标准收取水费:10吨及以下的部分,每吨收费1.55元,10吨至20吨的部分,每吨收费增加0.65元,20吨以上的部分,每吨收费2.5元。如果李叔叔家一月份的水费付了40元,那么李叔叔家一月份用水多少吨?
54.王欣家12月份用电240度,按照以上收费标准,王欣家12月份应付电费多少元?
上海市居民阶梯电价收费标准(按月计算)
第一档:用电量不超过180度的部分,每度0.45元;
第二档:超过180度,但不超过300度的部分,每度比第一档加价0.1元;
第三档:超过300度的部分,每度比第一档加价0.5元;
55.新华图书馆借阅收费标准如下:
3天内5元,超过3天就延期付费,每天收费1.5元(不满一天按一天计算),小刚在图书馆借了一本故事书,计划每天看30页,5.5天看完,小刚要付多少元?
(1)我们已经学过很多解决问题的策略,比如:画线段图、画示意图、列表法等,下面我们就用列表法解决这道题吧,根据题意完成下表。
看的天数/天
1
2
3
4
5
6
所付费用/元
列出算式(只列算式,不解答):( )
(2)如果他不想延期付费,每天看多少页?
56.受国际油价下降影响,国内汽油零售价下调。92号汽油原价6.80元/升,现在每升下调了0.34元,王叔叔加了48升92号汽油,少花了多少元?
57.滨城市城区出租汽车收费方案如下表。张权叔叔昨晚10:00出差回来从火车站乘坐出租车回家。火车站距张权叔叔家5000米,他乘坐出租车到家要花费多少钱?
58.迎新年各超市搞促销活动,一种饮料原来每瓶售价3元.现在甲、乙两家超市优惠情况如下:
甲:每瓶售价降低0.4元
乙:买五送一
小华要买12瓶这样的饮料,到哪家超市去买比较合适?(写出计算过程.)
59.电力是重要的资源,今年发生了席卷世界的用电紧张情况,我国至少已有16个省份出台了力度不等的限电措施。为了节约用电,缓解电力供应紧张,某省公布了居民用电阶梯电价听证方案:
第一档电量
第二档电量
第三档电量
月用电量210千瓦时及210千瓦时以下,每千瓦时价格0.52元
月用电量超过210千瓦时但不超过350千瓦时时,超过部分,每千瓦时比第一档提价0.05元
月用电量超过350千瓦时时,超过部分每千瓦时比第一档提价0.30元
(1)明明家6月份的用电量为230千瓦时,应缴电费多少元?
(2)笑笑家8月份的用电量为375千瓦时,应缴电费多少元?
60.超市地下停车场收费标准:2小时内(含2小时)收费8元;超过2小时,每小时加收2.5元(不足1小时按1小时计算)。爸爸停车7.5小时,需要缴纳多少停车费?
61.某校五年级学生排成一个方阵,最外一层的人数为60,问方阵最外一层每边有多少人? 这个方阵一共有学生多少人?
62.在一条全长4km的街道两边安装路灯(两端都安装),每隔40m安装一盏。一共要安装多少盏路灯?
63.一个圆形池塘的周长是300米,每隔6米栽种一棵柳树,池塘一周需要栽柳树多少棵?
64.要在一条长3600米的公路两侧植梧桐树(每侧两端都要植),计划相邻两棵树之间相距20米,共需梧桐树多少棵?
65.体育课上,五(2)班42名同学围成一个圆圈做游戏。每相邻两个同学之间的距离都是2米,这个圆圈的周长是多少米?
66.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
67.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯?
68.木工师傅要把一根长3.6米的木条锯成40厘米长的小木条,每锯一段用时2分钟,请你帮师傅算一算锯完这条木条共需要几分钟?
69.王大爷在正方形的鱼池边上植树,每边等距离植树10棵(四个角都栽树),每两棵树之间距离是8米,鱼池的周长是多少米?
70.(1)随着电动车的普及,充电问题日益突出,某大学为解决校园内充电难、乱停乱放问题,决定在校园安装10个充电区,每个充电区安装的长度都是45米,每隔0.9米安放一个充电桩(两端都安)。每个充电区要安装多少个充电桩?
(2)一般电动车每小时充电用电量是0.14度电,9小时左右充满。如果每度电收费1.6元,充5小时需要多少钱?
【参考答案】
1.(1)
(2)我最喜欢小华的解法:先计算1560度电的电费561.6元,再算出超出1560度部分,按超出部分每度0.45元计算电费是135.9元,再把两部分相加,所以应缴电费697.5元。
【解析】
(1)观察每种解法,判断出正确和错误的解法;
(2)选择喜欢的解法,用文字描述即可。
(1)
(2)答:我最喜欢小华的解法:先计算1560度电的电费561.6元,再算出超出1560度部分,按超出部分每度0.45元计算电费是135.9元,再把两部分相加,所以应缴电费697.5元。
【点睛】
本题考查分段计费,解答本题的关键是理解收费标准 。
2.2元
【解析】
根据单价×数量=总价,据此求出零买一个月的钱数,然后再减去整月订奶需要的钱数即可。
0.95×2×30-55.8
=57-55.8
=1.2(元)
答:零买一个月比整月订贵1.2元。
【点睛】
本题考查单价、数量和总价,明确它们之间的关系是解题的关键。
3.73千米
【解析】
根据求一个数的几倍是多少,用乘法计算即用藏羚羊的奔跑速度乘1.3就是,非洲猎豹的速度,结果根据四舍五入法保留两位小数即可。
1.33×1.3≈1.73(千米)
答:非洲猎豹的速度每分钟大约是1.73千米。
【点睛】
本题考查求一个数的几倍是多少,明确用乘法是解题的关键。
4.够
【解析】
25升汽油,每升汽油可行驶6.4千米,用6.4千米乘25升,求出25升可以行驶的路程;再用75千米乘2,求出往返一次需要行驶的路程,然后比较即可求解。
(千米)
(千米)
160千米千米
答:加的这些汽油够。
【点睛】
解决本题先根据乘法的意义分别求出可以行驶的路程和需要行驶的路程,再比较。
5.2元
【解析】
根据题意,超过3千米的距离为(7-3)千米,乘单价,求出超过3千米部分要付的钱数,再加上3千米收的6元,就是一共应付的车费。
2.8×(7-3)+6
=2.8×4+6
=11.2+6
=17.2(元)
答:应付17.2元车费。
【点睛】
本题考查分段计费问题,弄清每段的临界点和每段的收费标准。
6.(1)15元;(2)见详解
【解析】
(1)总价=单价×数量,用三文治的价格乘上三文治的数量再加上煎鸡蛋的单价乘煎鸡蛋的数量即可。
(2)选出一份健康、科学的早餐,按照总价=单价×数量计算即可。(答案不唯一)
(1)2×4.5+4×1.5
=9+6
=15(元)
答:妈妈买了2个三文治和4个煎鸡蛋,共需要15元。
(2)早餐买了4个包子和2个煎鸡蛋一共需要多少钱?(问题不唯一)
4×1.2+2×1.5
=4.8+3
=7.8(元)
答:早餐买了4个包子和2个煎鸡蛋一共需要7.8元。
【点睛】
熟练掌握小数乘法的计算是解题的关键。
7.(1)他需要用到记录单上每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)536元
【解析】
(1)要想求出每月加油共需要的钱数,则需要知道油的单价和数量,据此解答即可。
(2)根据单价×数量=总价,即可求出每月加油共需要的钱数,据此计算即可。
(1)他需要知道每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)6.7×(0.08×1000)
=6.7×80
=536(元)
答:张叔叔每月加油一共需要536元钱。
【点睛】
本题考查单价、数量和总价的关系,明确它们之间的关系是解题的关键。
8.5元
【解析】
根据单价×数量=总价,分别求出15千克面粉、大米的价钱,再相加,即是面粉和大米的总价;最后用支付的钱数减去花去的钱数,即可得出应找回的钱数。
5.5×15+6.4×15
=(5.5+6.4)×15
=11.9×15
=178.5(元)
200-178.5=21.5(元)
答:应找回21.5元。
【点睛】
掌握单价、数量、总价之间的关系是解题的关键。解题过程中可以运用乘法分配律a×c+b×c=(a+b)×c进行简便运算。
9.24元
【解析】
根据单价×数量=总价求出超出2千米的收费,再加上6元即可解答。
13.9千米≈14千米
(14-2)×1.5+6
=18+6
=24(元)
答:张老师需付24元。
【点睛】
此题考查的是分段计费问题,解答此题关键是明确按照不同的计分标准计算费用。
10.(1)见详解;
(2)540.8元
【解析】
(1)要计算出加油需多少钱,需要知道每月行驶的路程、每100千米的耗油量及汽油的单价,据此即可圈出所需的信息;
(2)先用每千米的耗油量乘上1000求出总的耗油量,再乘上每升汽油的价格,即可得出王叔叔每月加油共需多少钱。
(1)王叔叔要先计算出每月加油共需要多少钱,需要知道每月行驶的路程、每千米的耗油量及汽油的单价,将所需信息圈出如下:
(2)0.08×1000×6.76
=80×6.76
=540.8(元);
答:王叔叔每月加油共需540.8元钱。
【点睛】
此题考查的是价格问题,解决本题要有一定的生活常识以及明确数量、单价、总价之间的数量关系。
11.08千米
【解析】
先根据“速度=路程÷时间”求出山地自行车的速度,再根据“路程=速度×时间”求出2.4小时行驶的路程。
21.36÷0.8×2.4
=26.7×2.4
=64.08(千米)
答:2.4小时可以行驶64.08千米。
【点睛】
掌握路程、时间、速度之间的数量关系是解答题目的关键。
12.7元
【解析】
根据题意可得等量关系式:2千克苹果的总价元买香蕉用的钱数,设每千克苹果元,然后列方程依据等式的性质解答即可。
解:设每千克苹果元,
答:每千克苹果6.7元钱。
【点睛】
分析题意,找准等量关系式是解答此题的关键。
13.甲车每小时行90千米;乙车每小时行60千米
【解析】
先求出甲车行驶的路程,再根据“速度=路程÷时间”求出甲车的速度,等量关系式:(甲车的速度+乙车的速度)×相遇时间=总路程,据此列方程解答。
甲车每小时行驶的路程:(450÷2+45)÷3
=(225+45)÷3
=270÷3
=90(千米)
解:设乙车每小时行x千米。
(90+x)×3=450
90+x=450÷3
90+x=150
x=150-90
x=60
答:甲车每小时行90千米,乙车每小时行60千米。
【点睛】
根据路程、时间、速度之间的关系求出甲车每小时行驶的路程,并熟记相遇问题的计算公式是解答题目的关键。
14.(1)62吨
(2)26吨
【解析】
(1)由题意可知,甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,则现在比原来的存水多了7-5=2吨,据此解答即可。
(2)设原来乙池中存水x吨,则原来甲池存水(60-x)吨,根据现在甲池中的水比乙池少4吨,据此列方程解答即可。
(1)60+(7-5)
=60+2
=62(吨)
答:现在两个水池中共存水62吨。
(2)解:设原来乙池中存水x吨,则原来甲池存水(60-x)吨。
x+7-(60-x-5)=4
x+7-(55-x)=4
x+7-55+x=4
2x=52
x=26
答:原来乙池中存水26吨。
【点睛】
本题考查用方程解决实际问题,明确等量关系是解题的关键。
15.150只
【解析】
设购进的大中国结有x只,根据关系式:大中国结的数量×4-60=小中国结的数量,据此列方程求解。
解:设购进的大中国结有x只。
答:超市购进150只大中国结。
【点睛】
解答本题的关键是认真审题,然后找出数量关系式是解题的关键。
16.甲车63km;乙车42km
【解析】
设乙车每时行xkm,则甲车每小时行1.5xkm,根据速度和×相遇时间=总路程,列出方程求出x的值是乙车速度,乙车速度×1.5=甲车速度。
解:设乙车每时行xkm。
(1.5x+x)×5=525
2.5x×5=525
12.5x÷12.5=525÷12.5
x=42
42×1.5=63(km)
答:甲车每小时行63km,乙车每小时行42km。
【点睛】
用方程解决问题的关键是找到等量关系。
17.9岁
【解析】
设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。
解:设今年大头儿子x岁。
4x-x=27
3x÷3=27÷3
x=9
答:今年大头儿子9岁。
【点睛】
用方程解决问题的关键是找到等量关系。
18.6元
【解析】
妈妈买了苹果和香蕉各4千克,共花了59.2元。每千克苹果11.2元,我们可以设每千克香蕉x元,根据重量×单价=总价即可列方程求解。
解:设每千克香蕉x元。
4×(11.2+x)=59.2
4×(11.2+x)÷4=59.2÷4
11.2+x=14.8
11.2+x-11.2=14.8-11.2
x=3.6
答:每千克香蕉3.6元。
【点睛】
用方程解答本题关键就是找到题目里面隐含的等量关系式,根据等量关系式列方程。
19.爸爸8400元,妈妈5600元。
【解析】
可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。
解:画出线段图:
设小红妈妈的工资为x,小红爸爸的工资为1.5x,则可列出方程:
则小红爸爸的工资为:(元)。
答:上个月小红爸爸的工资是8400元,小红妈妈工资为5600元。
【点睛】
本题主要考查的是运用方程解决实际问题,解题的关键是熟练找出等量关系,进而列出方程得出答案。
20.(1)4a+11.2平方米
(2)43.2平方米
【解析】
(1)客厅和厨房都是长方形,长方形的面积=长×宽,表示出客厅和厨房面积,相加即可;
(2)求值时,要先看字母等于几,再写出原式,最后把数值代入式子计算。
(1)4a+2.8×4=4a+11.2(平方米)
答:小宁家的客厅和厨房的总面积是4a+11.2平方米。
(2)4a+11.2
=4×8+11.2
=32+11.2
=43.2(平方米)
答:小宁家的客厅和厨房的总面积是43.2平方米。
【点睛】
当字母的数值确定时,把它代入含有字母的式子中进行计算,所得的结果就是含有字母的式子的值。
21.5元
【解析】
根据“他攒钱想买5本一套的《玩转科学》丛书,一套售价95元。林林攒够了钱去新华书店买书,刚好碰上书店促销,这套丛书现在只售77元”可知,每套《玩转科学》比原来少付“95-77”元,再根据“单价×数量=总价”,求出买5套《玩转科学》比原来少付多少钱,也就是4个笔记本的总价,再根据“单价=总价÷数量”,即可求出每个笔记本多少钱。
(95-77)×5÷4
=18×5÷4
=90÷4
=22.5(元)
答:每个笔记本22.5元。
【点睛】
熟练掌握单价、数量和总价之间的关系,是解答此题的关键。
22.44个
【解析】
需要纸箱的数量=樱桃的总质量÷每个纸箱可以装樱桃的质量,余下的樱桃装不满一个纸箱时,需要多准备一个纸箱,结果用进一法保留整数,据此解答。
520÷12≈44(个)
答:至少需要44个这样的纸箱才能全部运完。
【点睛】
本题主要考查商的近似数,根据实际情况用进一法取整数是解答题目的关键。
23.(1)31个
(2)6元
【解析】
(1)根据数量总价单价,将数据代入,即可得出答案;
(2)根据第(1)小题得出的王奶奶能买的月饼数量去确定需要几个包装盒,再根据总价单价数量,将数据代入,即可得出答案。
(1)(个(元)
答:这些钱最多可以买31个月饼。
(2)(盒)
(元)
答:买包装盒子至少需要6元钱。
【点睛】
本题考查学生对有余数除法运算的运用,注意根据实际情况采用”进一法“或者”去尾法“。
24.8元
【解析】
先设出所求问题为x,进而根据“单价×数量=总价”分别计算出买牙膏和洗衣粉的总价,继而根据“买牙膏的钱数+洗衣粉的钱数=一共花的钱数”列出方程,进行解答即可。
解:设一袋洗衣粉x元。
3×5.1+2x=30.9
15.3+2x=30.9
15.3+2x-15.3=30.9-15.3
2x=15.6
2x÷2=15.6÷2
x=7.8
答:一袋洗衣粉7.8元。
【点睛】
解答此题的关键是先设出所求数,进而找出数量间的相等关系式,然后根据相等关系式,列出方程,进行解答即可得出结论。
25.5公顷
【解析】
根据题意,此题可先求出平均每台播种机1.8小时能播种多少公顷,再求出每台每小时播种多少公顷,列出综合算式为5.4÷2÷1.8,由此进行解答即可。
5.4÷2÷1.8
=2.7÷1.8
=1.5(公顷)
答:每台播种机每小时播种1.5公顷。
【点睛】
此题属于连除应用题,解决此题也可以先求出两台播种机平均每小时能播种多少公顷,再求出每台每小时播种多少公顷。
26.200份
【解析】
根据题意,每份报纸赚(1-0.75)元,求赚50元钱至少要卖出的报纸份数,就是求50元里有多少个(1-0.75)元,用除法计算。
50÷(1-0.75)
=50÷0.25
=200(份)
答:他至少要卖出200份报纸。
【点睛】
本题考查小数除法的意义及应用,掌握小数除法的计算法则是解题的关键。
27.8天
【解析】
用路的总长25千米除以每天修的3.5千米,利用“进一法”将商保留到整数部分,求出至少需要几天修完。
25÷3.5≈8(天)
答:至少要8天修完。
【点睛】
本题考查了工程问题,掌握“工作时间=工作总量÷工作效率”是解题的关键。
28.18个
【解析】
先求出一个礼盒需要多长彩带,再求出一根32.5米长的彩带最多可以包扎几个礼盒,用去尾法解决。
(个)……0.1(米)
≈18(个)
答:一根32.5米长的彩带最多可以包扎18个礼盒。
【点睛】
本题考查商的近似数,解答本题的关键是掌握用去尾法解决问题。
29.35张
【解析】
先求出5支铅笔需要多少钱,再用20元减去铅笔的钱,求出剩下的钱,再求出可以买几张彩纸。
(张)
答:可以买35张。
【点睛】
本题考查小数乘除法,解答本题的关键是掌握小数乘除法的计算方法。
30.(1)小林;
(2)0.2千米
【解析】
(1)观察图示,旗子离着谁家远谁的速度就快一些;
(2)设小云每分钟行x千米,根据小林速度×时间+小云速度×时间=1.8千米,列出方程解答即可。
(1)从上图看,小林的速度快一些。
(2)解:设小云每分钟行x千米。
0.25×4+4x=1.8
1+4x-1=1.8-1
4x÷4=0.8÷4
x=0.2
答:小云每分钟行0.2千米。
【点睛】
关键是理解速度、时间、路程之间的关系,用方程解决问题的关键是找到等量关系。
31.(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1
解析:(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1)偶数与偶数的和是偶数,据此判断即可;
(2)设大船租了x条,小船租了(18-x)条,再根据划船的同学正好是60人,列出方程解答即可。
(1)不能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)解:设大船租了x条,小船租了(18-x)条。
4x+2(18-x)=60
2x+36=60
2x=24
x=12
小船:18-12=6(条)
答:大船租了12条,小船租了6条。
【点睛】
本题考查奇数与偶数、列方程解决问题,解答本题的关键是掌握列方程解决问题的计算方法。
32.5分米
【解析】
根据题意,用一根铁丝围成一个等腰梯形,那么铁丝的长度就是梯形的周长;等腰梯形的两条腰长度相等,先用一条腰的长度乘2,求出两条腰的长度,再用铁丝的长度减去两条腰的长度,即可求出上底与
解析:5分米
【解析】
根据题意,用一根铁丝围成一个等腰梯形,那么铁丝的长度就是梯形的周长;等腰梯形的两条腰长度相等,先用一条腰的长度乘2,求出两条腰的长度,再用铁丝的长度减去两条腰的长度,即可求出上底与下底之和;根据梯形的面积=(上底+下底)×高÷2可知,梯形的高=面积×2÷(上底+下底),代入数据计算即可。
梯形的上底与下底之和:
15.6-4.1×2
=15.6-8.2
=7.4(分米)
梯形的高:
12.95×2÷7.4
=25.9÷7.4
=3.5(分米)
答:这个梯形的高是3.5分米。
【点睛】
明确铁丝的长度等于梯形的周长,掌握等腰梯形的特征,以及灵活运用梯形的面积公式是解题的关键。
33.够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积
解析:够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。
8.8≈9
5.9≈6
9×6=54(平方米)
8分米=0.8米
0.8×0.8×100
=0.64×100
=64(平方米)
54<64,够。
答:100块够。
【点睛】
掌握用估算解决小数乘法应用题的方法是解题的关键。
34.260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,
解析:260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,解答本题的关键是掌握梯形的周长和面积计算公式。
35.①200平方米
②够
【解析】
①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。
②增加的面积×每平方米价格,求出实际费用,与预算比较即可。
①50×20-
解析:①200平方米
②够
【解析】
①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。
②增加的面积×每平方米价格,求出实际费用,与预算比较即可。
①50×20-(50+30)×20÷2
=1000-80×10
=1000-800
=200(m2)
答:面积比原来增加了200平方米。
②200×7.8=1560(元)
1560<1600
答:预算的钱够。
【点睛】
关键是掌握并灵活运用梯形面积公式。
36.45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
解析:45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
37.(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑
解析:(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑树.
(2)4125×3.15-14437.5(元),
825×15=12375(元),14437.5>12375,所以种桑树比较划算.
38.25m
【解析】
解析:25m
【解析】
39.288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面
解析:288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面积是三角形ABC的2倍,据此解答即可。
12×4×3×2=288(cm2)
答:平行四边形ABCD的面积是288cm2。
【点睛】
解题关键是三角形的底扩大到原来的几倍,高
展开阅读全文