1、人教版中学七年级下册数学期末复习含解析一、选择题1如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A1与2是对顶角B1与3是同旁内角C3与4是同位角D2与3是内错角2春意盎然,在婺外校园里下列哪种运动不属于平移( )A树枝随着春风摇曳B值日学生拉动可移动黑板C行政楼电梯的升降D晚自修后学生两列队伍整齐排列笔直前行3在平面直角坐标系中位于第二象限的点是( )ABCD4下列命题是假命题的是()A同位角相等,两直线平行B三角形的一个外角等于与它不相邻的两个内角的和C平行于同一条直线的两条直线平行D平面内,到一个角两边距离相等的点在这个角的平分线上5如图,已知直线AB,CD被直线AC所截,
2、ABCD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设BAE,DCE下列各式:,180,360中,AEC的度数可能是( )ABCD6下列说法正确的是()A9的立方根是3B算术平方根等于它本身的数一定是1C2是4的一个平方根D的算术平方根是27如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,均在格点上,其顺序按图中“”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,1),P5(1,1),P6(1,2)根
3、据这个规律,点P2021的坐标为()A(505,505)B(505,506)C(506,506)D(505,505)九、填空题9的算术平方根是_十、填空题10已知点P(3,1),则点P关于x轴对称的点Q_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为15,DE3,AB6,则AC的长是 _ 十二、填空题12如图,直线,则_十三、填空题13如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则_,_十四、填空题14对于有理数a,b,规定一种新运算:ab=ab+b,如23=23+3=9下列结论:(3)4=8;若ab=ba,则a=
4、b;方程(x4)3=6的解为x=5;(ab)c=a(bc)其中正确的是_(把所有正确的序号都填上)十五、填空题15,则在第_象限十六、填空题16如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为_十七、解答题17计算题:(1); (2)十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19阅读下列推理过程,在括号中填写
5、理由已知:如图,点、分别是线段、上的点,平分,交于点求证:平分证明:平分(已知)( )(已知)( )( )(等量代换)( )( )( )( )平分( )二十、解答题20如图,在平面直角坐标系中,点、在轴上,(1)写出点、的坐标(2)如图,过点作交轴于点,求的大小(3)如图,在图中,作、分别平分、,求的度数二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:(1)若的整数部分为
6、,小数部分为,求的值(2)已知:,其中是整数,且,求的值二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写
7、出BAC的度数和此时AD与AC之间的位置关系二十四、解答题24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由二十五、解答题25如图,在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、选择题1C解析:C【分析】根据
8、对顶角、邻补角、同位角、内错角的定义分别分析即可【详解】解:A、1与2是邻补角,故原题说法错误;B、1与3不是同旁内角,故原题说法错误;C、3与4是同位角,故原题说法正确;D、2与3不是内错角,故原题说法错误;故选:C【点睛】此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义2A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学
9、生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;故选A【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【
10、分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大5C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质
11、进行计算求解即可【详解】解:(1)如图1,由ABCD,可得AOCDCE1,AOCBAE1AE1C,AE1C(2)如图2,过E2作AB平行线,则由ABCD,可得1BAE2,2DCE2,AE2C(3)如图3,由ABCD,可得BOE3DCE3,BAE3BOE3AE3C,AE3C(4)如图4,由ABCD,可得BAE4AE4CDCE4360,AE4C360综上所述,AEC的度数可能是,360故选:C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:9的立方根是,故A项错误;
12、算术平方根等于它本身的数是1和0,故B项错误;2是4的一个平方根,故C项正确;的算术平方根是,故D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图
13、是解题的关键8A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,解析:A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,故选:A【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键九、填空题9【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关
14、键解析:【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键十、填空题10(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可【详解】解:点P(3,1)点P关于x轴对称的点Q(3,1)故答案为(3,1)【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可【详解】解:点P(3,1)点P关于x轴对称的点Q(3,1)故答案为(3,1)【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键十一、填空题11
15、4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是ABC的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题12120【分析】延长AB交直线b于点E,可得,则 ,再由,可得
16、,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】解析:120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键十三、填空题1368; 112 【分析】首先根据折叠的性质和平行线的性质求FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求出2的度数【详解】解:延折叠得到,解析:68; 112 【分析】首先根据折叠的性质和平行线的性质求FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求
17、出2的度数【详解】解:延折叠得到,(两直线平行,内错角相等),又,综上,故答案为:68;112【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键十四、填空题14【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若解析:【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若ab,则两式不相等,所以错误;方程(x4) )3=6化为3(x4)+3=6,解得x=
18、5,所以正确;左边=(ab) c=(ab+b) )c=(ab+b)c+c=abc+bc+c右边=a(bc)=a(bc+c)=a(bc+c) +(bc+c)=abc+ac+bc+c2两式不相等,所以错误综上所述,正确的说法有故答案为.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义本题主要考查学生综合分析能力、运算能力十五、填空题15二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质
19、列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即
20、可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,202163365,即点P2021的坐标是(4,3)故答案为:(4,3)【点睛】本题考查了生活中的轴对称现象,点的坐标解题的关键是能够正确找到循环数值,从而得到规律十七、解答题17(1);(2)【分析】(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案【详解】解解析:(1);(2)【分析】(1)先计算被开方数
21、,再利用算术平方根的含义求解即可得到答案;(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案【详解】解:(1),(2) 【点睛】本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x
22、+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键十九、解答题19见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(已知)(
23、两直线平行,同位角相等)(两直线平行,内错角相等)(等量代换)平分(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, 【详解】解:(1)依题意得
24、:,;(2),;(3),分别平分,过点作,则,【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键二十一、解答题21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-
25、3 =+-3-=6(2) 12又10+=x+y,其中x是整数,且0y1,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较
26、4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当A
27、CBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性
28、质是解题的关键二十四、解答题24(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图
29、3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十五、解答题25(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)
30、(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180