1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,下列条件中,能判定的是( )ABCD2如图,在O中,直径CD弦AB,则下列结论中正确的是AAC=ABBC=BODCC=BDA=B0D3数据3、4、6、7、x的平均数是5
2、,这组数据的中位数是( )A4B4.5C5D64在RtABC中,C90,AC5,BC12,则cosB的值为()ABCD5在ABC中,tanC,cosA,则B()A60B90C105D13563的绝对值是()A3B3C-D7若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )A15B20C24D308如图,在ABC中,点G为ABC的重心,过点G作DEBC,分别交AB、AC于点D、E,则ADE与四边形DBCE的面积比为()ABCD9在正方形ABCD中,AB3,点E在边CD上,且DE1,将ADE沿AE对折到AFE,延长EF交边BC于点G,连接AG,CF下列结论,其中正确的有
3、()个(1)CGFG;(2)EAG45;(3)SEFC;(4)CFGEA1B2C3D410在RtABC中,C90,B35,AB3,则BC的长为()A3sin35BC3cos35D3tan35二、填空题(每小题3分,共24分)11如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1x轴,垂足为A1,在OA1的延长线上截取A1 B1= OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2x轴,垂足为A2,在OA2的延长线上截取A2 B2= B1A2,连结P1 B1,P2 B2,则的值是 12已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长
4、度等于_厘米13已知抛物线,过点(0,2),则c_14如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为_15若正多边形的每一个内角为,则这个正多边形的边数是_16分式方程的解是_17如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则_(填“”或“”或“=”)18小明制作了一张如图所示的贺卡. 贺卡的宽为,长为,左侧图片的长比宽多. 若,则右侧留言部分的最大面积为_. 三、解答题(共66分)19(10分)如图,中,是斜边上一个动点,以为直径作交于点,与的另一个交点,连接(1)当时,若,
5、求的度数;求证;(2)当,时,是否存在点,使得是等腰三角形,若存在,求出所有符合条件的的长20(6分)先化简,再从0、2、4、1中选一个你喜欢的数作为x的值代入求值21(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点(1)求该反比例函数和一次函数的解析式;(2)在轴上找到一点使最大,请直接写出此时点的坐标22(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线
6、AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度23(8分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:OCDOAB;(3)在x轴上找一点P,使得PCD的周长最小,求出P点的坐标24(8分)如图,一次函数y=kx+b与反比例函数y=(x0)的图象交于A(m,6),B(n,3)两点(1)求一次函数的解析式;(2)根据图象直接写出kx+b0时x的取值范围(3)若M是x轴上一点,且MOB和AOB的面积相等,求M点坐标25(10分)如图,在平
7、面直角坐标系中,抛物线行经过点和点,交轴正半轴于点,连接,点是线段上动点(不与点重合),以为边在轴上方作正方形,接,将线段绕点逆时针旋转90,得到线段,过点作轴,交抛物线于点,设点(1)求抛物线的解析式;(2)若与相似求的值;(3)当时,求点的坐标26(10分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,这些卡片除数字外,其余都相同(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解)参考答案一、选择题(每小题3分,共30分)1、D【分
8、析】根据相似三角形的各个判定定理逐一分析即可【详解】解:A=A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但A不是两组对应边的夹角,不能判定,故C选项不符合题意; 若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意故选D【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键2、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到C=BOD,从而可对各选项进行判断【详解】解:直径CD弦AB,弧AD =弧BD,C=BOD故选B【点睛】本题考查了垂径定理和圆周角定理,
9、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、C【分析】首先根据3、4、6、7、x这组数据的平均数求得x值,再根据中位数的定义找到中位数即可【详解】由3、4、6、7、x的平均数是1,即得这组数据按照从小到大排列为3、4、1、6、7,则中位数为1故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键4、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可【详解】由勾股定理得,则,故选:B【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比
10、叫做A的余弦是解题的关键5、C【分析】直接利用特殊角的三角函数值得出C=30,A=45,进而得出答案【详解】解:tanC,cosA,C=30,A=45,B=180-C-A=105故选:C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键6、B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7、A【解析】试题分析:圆锥的主视图是腰长为5,底边长为6的等腰三角形,这个圆锥的底面圆的半径为3,母线长为5.这个圆锥的侧面积=故选A考点:1.简单几何体
11、的三视图;2.圆锥的计算8、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明ADEABC,根据相似三角形的性质得到=,然后根据比例的性质得到ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,点G为ABC的重心, AG2GH,DEBC,ADEABC,()2,ADE与四边形DBCE的面积比故选:A【点睛】本题考查了三角形的重心与相似三角形的性质与判定. 重心到顶点的距离与重心到对边中点的距离之比为21.9、C【分析】(1)根据翻折可得ADAFAB3,进而可以证明ABGAFG,再设CGx,利用勾股定理可求得x的值,即可证明CGFG;(2
12、)由(1)ABGAFG,可得BAGFAG,进而可得EAG45;(3)过点F作FHCE于点H,可得FHCG,通过对应边成比例可求得FH的长,进而可求得SEFC;(4)根据(1)求得的x的长与EF不相等,进而可以判断CFGE.【详解】解:如图所示:(1)四边形ABCD为正方形,ADABBCCD3,BADBBCDD90,由折叠可知:AFAD3,AFED90,DEEF1,则CE2,ABAF3,AGAG,RtABGRtAFG(HL),BGFG,设CGx,则BGFG3x,EG4x,EC2,根据勾股定理,得在RtEGC中,(4x)2x2+4,解得x,则3x, CGFG,所以(1)正确;(2)由(1)中RtA
13、BGRtAFG(HL),BAGFAG,又DAEFAE,BAG+FAG+DAE+FAE90,EAG45,所以(2)正确;(3)过点F作FHCE于点H,FHBC,,即1:(+1)FH:(),FH,SEFC2,所以(3)正确;(4)GF,EF1,点F不是EG的中点,CFGE, 所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.10、C【分析】根据余弦定义求解即可【详解】解:如图,C90,B35,AB3,cos35,BC3cos35故选:C【点睛】本题考查
14、了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键二、填空题(每小题3分,共24分)11、【详解】解:设P1点的坐标为(),P2点的坐标为(b,)OP1B1,B1P2B2均为等腰三角形,A1B1=OA1,A2B2=B1A2,OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),OP1B1P2,P1OA1=A2B1P2,RtP1OA1RtP2B1A2,OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)B1B2=2(b-2a)=(6-4)b,故答案为:【点睛】该题较为复杂,主要考查学生对相似三角形
15、的性质和反比例函数上的点的坐标与几何图形之间的关系12、1【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】线段c是线段a和线段b的比例中项,解得(线段是正数,负值舍去),故答案为:1【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.13、2【分析】将点(0,2)代入原解析式解出c的值即可.【详解】抛物线,过点(0,2),c=2,故答案为:2.【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键.14、1【解析】试题分析:点A、B是双曲线上的点,S矩形ACOG=S矩形BEOF=6,S阴影DGOF=2,S矩
16、形ACDF+S矩形BDGE=6+622=1,故答案为1考点:反比例函数系数k的几何意义15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为: 多边形的边数为: 故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、【分析】等式两边同时乘以,再移项即可求解【详解】等式两边同时乘以得:移项得:,经检验,x=2是方程的解.故答案为:【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键17、=【分析】连接OP、OQ,根据反比例函数的几
17、何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则点P、点Q在反比例函数的图像上,四边形OMPA、ONQB是矩形,OM=AP,OB=NQ,;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.18、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm右侧留言部分的面积又14x16当x=16时,面积最大(故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解
18、题关键是根据题意写出面积的函数表达式.三、解答题(共66分)19、(1)40;证明见解析;(2)存在,的长为10或或1【分析】(1)连接,由圆周角定理得出,求出,则,即可得出结果;由,得出,易证,由,得出,即可得出结论;(2)由勾股定理得,由面积公式得出,求出,连接,则,得出,求出,是等腰三角形,分三种情况讨论,当时,;当时,可知点是斜边的中线,得出,;当时,作,则是中点,求出,由,得出,求出,则【详解】(1)解:连接,如图1所示:是直径,;证明:,;(2)解:由,由勾股定理得:,即,连接,如图所示:是直径,是等腰三角形,分三种情况:当时,;当时,可知点是斜边的中线,;当时,作,则是中点,如图
19、所示:,即,解得:,;综上所述,是等腰三角形,符合条件的的长为10或或1【点睛】本题是圆的综合题目,考查了圆周角定理、勾股定理、等腰三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质,熟练运用圆的基本性质定理是解题的关键20、原式=x,当x1时,原式1【分析】先对分子分母分别进行因式分解,能约分的先约分,再算括号,化除法为乘法,再进行约分;再从0、2、4、1中选使得公分母不为0的数值代入最简分式中即可.【详解】解:原式 x20,x40,x0x2且x4且x0 当x1时,原式1.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键21、(1),;(2)【分析】(1)利用待定系
20、数法由点A坐标可求反比例函数,然后计算出B的坐标,于是可求一次函数的解析式;(2)根据一次函数与y轴的交点P,此交点即为所求.【详解】解:(1)把代入,可得,反比例函数的解析式为把点代入,可得,把,代入,可得解得一次函数的解析式为;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,一次函数与y轴的交点为P(0,2),此时,PB-PC=BC最大,P即为所求.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,正确掌握反比例函数的性质是解题的关键22、米.【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(
21、0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.23、(1)y=x1+x;(1)证明见解析;(3)P(,0)【分析】(1)用待定系数法求出抛物线解析式;(1)先求出直线OA对应的一次函数的表达式为y=x再求出直线BD的表达式为y=x1最后求出交点坐标C,D即可;(3)先判断出CD与x轴的交点即为点P,它使得PCD的周长最小作辅助线判断出CPOC
22、DQ即可【详解】解:(1)抛物线顶点为A(,1),设抛物线解析式为y=a(x)1+1,将原点坐标(0,0)在抛物线上,0=a()1+1a=,抛物线的表达式为:y=x1+x(1)令y=0,得 0=x1+x,x=0(舍),或x=1B点坐标为:(1,0),设直线OA的表达式为y=kxA(,1)在直线OA上,k=1,k=,直线OA对应的一次函数的表达式为y=xBDAO,设直线BD对应的一次函数的表达式为y=x+bB(1,0)在直线BD上,0=1+b,b=1,直线BD的表达式为y=x1由得交点D的坐标为(,3),令x=0得,y=1,C点的坐标为(0,1),由勾股定理,得:OA=1=OC,AB=1=CD,
23、OB=1=OD在OAB与OCD中,OABOCD(3)点C关于x轴的对称点C的坐标为(0,1),CD与x轴的交点即为点P,它使得PCD的周长最小过点D作DQy,垂足为Q,PODQ,CPOCDQ,PO=,点P的坐标为(,0)【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式24、(1)一次函数的解析式为y=3x+9;(2)1x2;(3)点M的坐标为(3,0)或(3,0)【解析】(1)首先求出A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即
24、可;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),由SAOB=SOBM,可得SAOP-SOBP=SOBM,列出方程即可解决问题【详解】(1)点A(m,6)、B(n,3)在函数图象上,m=1,n=2,A点坐标是(1,6),B点坐标是(2,3),把(1,6)、(2,3)代入一次函数y=kx+b中,得,解得一次函数的解析式为y=-3x+9;(2)观察图象可知,kx+b-0时x的取值范围是1x2;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),SAOB=SOBM,SAOP-SOBP=SOBM,解得m=3,点M的坐标为(3,0)或(-3,0)【点睛】本题考查一次函数与反比例函数
25、的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题25、(1)yx2+3x+4;(2)a或;(3)点P的坐标为(1,4)或(2,4)或(,4)【分析】(1)点C(0,4),则c=4,二次函数表达式为:y=-x2+bx+4,将点A的坐标代入上式,即可求解;(2)AOC与FEB相似,则FBE=ACO或CAO,即:tanFEB=或4,即可求解;(3)证明PNFBEF(AAS),PH=2,则-4a2+6a+4-4=|2|,即可求解【详解】解:(1)将点A和点C的坐标代入上式得:01b+4,解得:b3,故抛物线的表达式为:yx2+3x+4
26、;(2)tanACO,AOC与FEB相似,则FBEACO或CAO,tanFBE或4,四边形OEFG为正方形,则FEOEa,EB4a,则或,解得:a或;(3)令yx2+3x+40,解得:x4或1,故点B(4,0);分别延长GF、HP交于点N,PFN+BFN90,FPN+PFN90,FPNNFB,GNx轴,FPNNFBFBE,PNFBEF90,FPFB,PNFBEF(AAS),FNFEa,PNEB4a,点P(2a,4),点H(2a,4a2+6a+4),PH2,即:4a2+6a+442,解得:a1或或或(舍去),故:点P的坐标为(1,4)或(2,4)或(,4)【点睛】本题考查的是二次函数综合运用,涉及到三角形全等、正方形的性质、三角形相似等,其中(2)、(3),要注意分类求解,避免遗漏26、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率【详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图