资源描述
八年级期末试卷培优测试卷
一、选择题
1.如果二次根式有意义,那么的取值范围是( )
A. B. C. D.
2.由下列线段组成的三角形不是直角三角形的是( )
A.7,24,25 B.4,5, C.3,5,4 D.4,5,6
3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是( )
A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C
4.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是,,,则成绩最稳定的是( )
A.甲 B.乙 C.丙 D.无法确定
5.已知直角三角形的两条直角边长分别为a和b,斜边长为c.①如果a=12,b=5,那么c=13;②如果a=3,c=4,那么b=5;③如果c=10,b=9,那么a=.其中正确的是( )
A.①②③ B.①③ C.①② D.②③
6.如图,在平行四边形ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AFE处.若∠B=42°,∠DAE=20°,则∠FEC的大小为( )
A.50° B.54° C.56° D.62°
7.如图,在Rt△ABC中,AB=6,BC=8,AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,则DE的长为( )
A.4 B.5 C.6 D.7
8.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是( ).
A. B. C. D.
二、填空题
9.若的取值范围是,则a=__________.
10.菱形的两条对角线长分别为5和8,则这个菱形的的面积为__________.
11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________.
12.如图,在矩形中,对角线,相交于点,,,则的长是________.
13.设一次函数y=kx+3. 若当x=2时,y=-1,则k=___________
14.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.
15.如图①,在平面直角坐标系中,等腰在第一象限,且轴.直线从原点O出发沿x轴正方向平移.在平移过程中,直线被截得的线段长度n与直线在x轴上平移的距离m的函数图象如图②所示,那么的面积为__________.
16.如图,在平面直角坐标系 中,等边、等边、等边……的边 、、……依次在直线 上,且它们的边长依次为 、、……(逐次增加 ),那么 的坐标是__________.
三、解答题
17.计算:
(1)(2+)(2﹣);
(2)﹣3;
(3)(π﹣2021)0.
18.一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m.
(1)这架云梯的底端距墙角有多远?
(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m?
19.如图,网格中的,若小方格边长为,请你根据所学的知识,
(1)判断是什么形状?并说明理由;
(2)求的面积.
20.如图,在中,两条对角线AC和BD相交于点O,并且,,.
(1)AC与BD有什么位置关系?为什么?
(2)四边形ABCD是菱形吗?为什么?
21.已知实数a,b满足:b2=1+﹣,且|b|+b>0
(1)求a,b的值;
(2)利用公式,求++…+
22.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和(小时)之间的函数图象如图所示.
(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?
(2)若小强2月份希望有300元费用,则小强1月份需做家务多少时间?
23.图1,在正方形中,,为线段上一点,连接,过点作,交于点.将沿所在直线对折得到,延长交于点.
(1)求证:.
(2)若,求的长.
(3)如图2,延长交的延长线于点,若,记的面积为,求与之间的函数关系式.
24.将一矩形纸片放在平面直角坐标系中,为原点,点在轴上,点在轴上,,.如图1在边上取一点,将沿折叠,使点恰好落在边上,记作点:
(1)求点的坐标及折痕的长;
(2)如图2,在、边上选取适当的点、,将沿折叠,使点落在上,记为点,设,四边形的面积为.求:与之间的函数关系式;
(3)在线段上取两点、(点在点的左侧),且,求使四边形的周长最短的点、点的坐标.
25.如图1,在矩形ABCD中,AB=a,BC=6,动点P从B出发沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′.
(1)如图2,当点P在线段BC上运动时,直线PB′与CD相交于点M,连接AM,若∠PAM=45°,请直接写出∠B′AM和∠DAM的数量关系;
(2)在(1)的条件下,请求出此时a的值:
(3)当a=8时,
①如图3,当点B′落在AC上时,请求出此时PB的长;
②当点P在BC的延长线上时,请直接写出△PCB′是直角三角形时PB的长度.
【参考答案】
一、选择题
1.B
解析:B
【分析】
二次根式有意义,则,据此解题.
【详解】
解:二次根式有意义,则,
,
故选:B.
【点睛】
本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.
2.D
解析:D
【分析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;
B、∵42+52=41=()2,∴能够成直角三角形,故本选项不符合题意;
C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;
D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.
故选:D.
【点睛】
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.A
解析:A
【解析】
【分析】
根据平行四边形的判定方法,逐项判断即可.
【详解】
解:A、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;
B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;
C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;
D、∵AB∥CD,
∴∠A+∠D=180°,
∵∠A=∠C,
∴∠C+∠D=180°,
∴AD∥BC,
∴四边形ABCD为平行四边形;
故选:A.
【点睛】
本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.
4.C
解析:C
【解析】
【分析】
根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.
【详解】
解:由于 ,
∴成绩较稳定的是丙.
故选C.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.B
解析:B
【分析】
①由勾股定理求出斜边c=13,故①正确;②由勾股定理求出b=,故②错误;③由勾股定理求出a=,故③正确;即可求解.
【详解】
解:①∵a=12,b=5,
∴,故①正确;
②∵a=3,c=4,
∴故②错误;
③∵c=10,b=9,
∴,故③正确;
故选:B.
【点睛】
本题考查了勾股定理,由勾股定理求出第三边的长是解题的关键.
6.C
解析:C
【解析】
【分析】
根据折叠的性质得到∠AEF=∠AED,再根据平行四边形的性质得到∠D,根据三角形内角和定理求得∠AED,根据补角求得∠AEC即可得到答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠D=42°,
∵∠DAE=20°,
∴∠AED=180°﹣42°﹣20°=118°,
∴∠AEC=62°,
∵将△ADE沿AE折叠至△AFE处,
∴∠AEF=∠AED=118°,
∴∠FEC=∠AEF﹣∠AEC=118°﹣62°=56°.
故选C.
【点睛】
本题主要考查了平行四边形的性质,折叠的性质,三角形内角和定理,补角的性质解题的关键在于能够熟练掌握相关知识进行求解.
7.B
解析:B
【解析】
【分析】
在中利用勾股定理求出长,利用折叠性质:得到,求出对应相等的边,设DE=x,在中利用勾股定理,列出关于的方程,求解方程即可得到答案.
【详解】
解:∵AB=6,BC=8,∠ABC=90°,
∴AC=,
∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,
,
∴A、B、E共线,AC=AE=10,DC=DE,
∴BE=AE﹣AB=10﹣6=4,
在Rt△BDE中,设DE=x,则BD=8﹣x,
∵BD2+BE2=DE2,
∴(8﹣x)2+42=x2,
解得x=5,
∴DE=5,
故选:B.
【点睛】
本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.
8.C
解析:C
【分析】
分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可.
【详解】
由点M是CD中点可得:CM=,
(1)如图:当点P位于线段AB上时,即0≤x≤1时,
y==x;
(2)如图:当点P位于线段BC上时,即1<x≤2时,
BP=x-1,CP=2-x,
y===;
(3)如图:当点P位于线段MC上时,即2<x≤时,
MP=,
y===.
综上所述:
.
根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符.
故选:C.
【点睛】
本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键.
二、填空题
9.-1
【解析】
【分析】
根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.
【详解】
解:由题意得:x+a≥0,
解得:x≥−a,
则−a=1,
解得:a=−1,
故答案为:−1.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
10.20
【解析】
【分析】
菱形的面积是对角线乘积的一半,由此可得出结果.
【详解】
解:∵菱形的两条对角线长分别为5和8,
∴菱形的面积:.
故答案为:20.
【点睛】
本题考查了菱形的面积,菱形面积的求解方法有两种:①底乘以高,②对角线积的一半,解题关键是对面积公式的熟练运用.
11.
【解析】
【分析】
利用勾股定理计算即可.
【详解】
解:∵直角三角形的两直角边长分别是1和3,
∴斜边==,
故答案为:.
【点睛】
本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
12.A
解析:3
【分析】
利用矩形的性质结合条件证明△AOB是等边三角形即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=3,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=3,
∴BC==3,
故答案为:3.
【点睛】
本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识,发现△AOB是等边三角形是突破点.
13.-2
【分析】
把x=2时,y=-1代入一次函数y=kx+3,解得k的值即可.
【详解】
解:把x=2时,y=-1代入一次函数y=kx+3得
-1=2k+3,解得k=-2.
故答案为:-2.
【点睛】
本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.
14.C
解析:3
【分析】
连接CE,设DE=x,则AE=8-x,判断出OE是AC的垂直平分线,即可推得CE=AE=8-x,然后在Rt△CDE中,根据勾股定理,求出DE的长是多少即可.
【详解】
详解:如图,连接CE,
,
设DE=x,则AE=8-x,
∵OE⊥AC,且点O是AC的中点,
∴OE是AC的垂直平分线,
∴CE=AE=8-x,
在Rt△CDE中,
x2+42=(8-x)2,
解得x=3,
∴DE的长是3.
故答案为3.
【点睛】
此题主要考查了矩形的性质、中垂线的性质和勾股定理,熟练掌握矩形的对角线互相平分和中垂线的性质是解题的关键.
15.2
【分析】
过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积.
【详解】
如
解析:2
【分析】
过点作于,设经过点时,与的交点为,根据函数图像,找到经过点和经过点的函数值分别求得,由与轴的夹角为45°,根据勾股定理求得,根据等腰三角的性质求得,进而求得三角形的面积.
【详解】
如图①,过点作于
由图②可知,当直线平移经过点时,;
随着平移,的值增大;
如图,当经过点时,与的交点为,如图
此时,则,
,与轴的夹角为45°,
为等腰直角三角形,
即
是等腰三角形
,
故答案为:2.
【点睛】
本题考查了一次函数图像的平移,等腰三角形的性质,勾股定理,从函数图像上获取信息,及掌握与轴的夹角为45°是解题的关键.
16.【分析】
利用等边三角形的性质和勾股定理先求出B、的坐标,找到规律,然后根据规律求出的坐标.
【详解】
解:根据点B在直线上,设,
如图,过点B作BCx轴于点C,
,,,
根据勾股定理列式:,解得
解析:
【分析】
利用等边三角形的性质和勾股定理先求出B、的坐标,找到规律,然后根据规律求出的坐标.
【详解】
解:根据点B在直线上,设,
如图,过点B作BCx轴于点C,
,,,
根据勾股定理列式:,解得,则,
点可以看作点B向右平移了2个单位,∴,
同理可以求出、、……、的坐标,从而得到、、……、的坐标,
,,
的纵坐标和的纵坐标相同,横坐标等于的横坐标加上12,
∴.
故答案是:.
【点睛】
本题考查的是函数结合几何图形找规律题,解题的关键是先根据函数图象和几何图形的性质求出前几个点的坐标,发现规律之后再去求题目要求的点坐标.
三、解答题
17.(1)﹣1;(2)1;(3)5+
【分析】
(1)利用平方差公式计算即可;
(2)先化简二次根式,再计算分子上的加法,继而计算除法,最后计算减法即可;
(3)先计算零指数幂、负整数指数幂、化简二次根
解析:(1)﹣1;(2)1;(3)5+
【分析】
(1)利用平方差公式计算即可;
(2)先化简二次根式,再计算分子上的加法,继而计算除法,最后计算减法即可;
(3)先计算零指数幂、负整数指数幂、化简二次根式,去绝对值符号,再计算加减即可.
【详解】
解:(1)原式=22﹣()2
=4﹣5
=﹣1;
(2)原式=﹣3
=﹣3
=4﹣3
=1;
(3)原式=1+2+2﹣+2
=5+.
【点睛】
本题考查实数的混合运算.主要考查二次根式的混合运算,零指数幂和负整数指数幂,平方差公式,化简绝对值等.掌握相关法则,能分别化简是解题关键.
18.(1);(2)
【分析】
根据题意,画出图形,
(1)在 中,直接根据勾股定理,即可求解;
(2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解.
【详解】
解:根据题意,画
解析:(1);(2)
【分析】
根据题意,画出图形,
(1)在 中,直接根据勾股定理,即可求解;
(2)设它的底部在水平方向滑动了 ,即 ,则 ,在 中,由勾股定理,即可求解.
【详解】
解:根据题意,画出图形,如下图:
(1)根据题意得: , ,
在 中,由勾股定理得:
,
即这架云梯的底端距墙角 ;
(2)设它的底部在水平方向滑动了 ,即 ,则 ,
根据题意得: , ,则 ,
在 中,由勾股定理得: ,
即 ,
解得: ,
即它的底部在水平方向滑动了.
【点睛】
本题主要考查了勾股定理的应用,熟练掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.
19.(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状;
(2)判断出AB和AC
解析:(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状;
(2)判断出AB和AC分别为底和高,利用公式直接计算出面积.
【详解】
解:(1)∵,
,
,
,
为直角三角形;
(2)由(1)可知:
;
的面积为.
【点睛】
本题考查了勾股定理,勾股定理逆定理,三角形的面积,充分利用网格是解题关键.
20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析
【分析】
(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;
(
解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析
【分析】
(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;
(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.
【详解】
解:(1)AC⊥BD;
理由如下:
在中,,
∵
∴∠BOC=90
∴AC⊥BD.
(2)四边形ABCD是菱形
∵四边形ABCD是平行四边形(已知),
AC⊥BD(已证)
∴四边形ABCD是菱形.
【点睛】
此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.
21.(1)a的值为2,b的值为1;(2)2018.
【解析】
【分析】
(1)根据二次根式有意义的条件得到
(2)根据公式 将原式化成多个式子相减,起到互相抵消的效果,做到化繁为简.
【详解】
(1
解析:(1)a的值为2,b的值为1;(2)2018.
【解析】
【分析】
(1)根据二次根式有意义的条件得到
(2)根据公式 将原式化成多个式子相减,起到互相抵消的效果,做到化繁为简.
【详解】
(1)由题意得:,
∵b2=1+
∴b=±1
∵|b|+b>0
∴b=1
∴a的值为2,b的值为1.
(2),
【点睛】
本题主要考查二次根式有意义的条件,学会应用公式推导一般并能实际运用.
22.(1)小强每月的基本生活费为元,当劳动时间不大于20小时,每小时劳动奖励为元,一个月内劳动时间超过小时,每小时劳动奖励为元;(2)小时
【分析】
(1)根据函数图象与轴的交点即可求得基本生活费,根据
解析:(1)小强每月的基本生活费为元,当劳动时间不大于20小时,每小时劳动奖励为元,一个月内劳动时间超过小时,每小时劳动奖励为元;(2)小时
【分析】
(1)根据函数图象与轴的交点即可求得基本生活费,根据函数图像是分段的,即可描述出父母是如何奖励小强做家务劳动的;
(2)根据劳动时间超过30小时的部分的解析式即可求得1月份需做家务的时间
【详解】
解:(1)根据函数图象可知,当时,,
小强每月的基本生活费为元
设劳动时间在20小时内的解析式为:
将点代入,得
解得
当时,设,
将点,代入得,
解得
则
当时,每小时劳动奖励为元,一个月内劳动时间超过小时,则每小时劳动奖励为元
(2)令,则
解得
答:小强2月份希望有300元费用,则小强1月份需做家务小时.
【点睛】
本题考查了一次函数的应用,理解题意,求得分段函数的解析式是解题的关键.
23.(1)证明见解析;(2);(3).
【分析】
(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;
(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ
解析:(1)证明见解析;(2);(3).
【分析】
(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;
(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ中用勾股定理列方程求解;
(3)作QG⊥AB于G,先证MB=MQ并设其为y,再在RT△MGQ中用勾股定理列出关于x、y的方程,并用x表示y;用y表示出△MBQ的面积,用x表示出△的面积.最后据用x、y表示出S,并把其中的y用x代换即可.
【详解】
(1)在正方形ABCD中
,
,
,
,
,
,
,
.
(2)在正方形ABCD中
连接,如下图:
由折叠知BC=,
又AB=BC,∠BAN=90°
∴, ,
,
,
,
,
,
设,
,
,
,
,
.
(3)如下图,作,垂足为,
由(1)知
∵∠MBQ=∠CQB=∠MQB
∴BM=MQ
设,则.
,
,
,
故.
【点睛】
此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.
24.(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(
解析:(1)E,;(2);(3),.
【解析】
【分析】
(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
(2)过点作于,则,从而在中可用表示出的长,利用梯形的面积公式可用表示出,点与点重合时是取得最大值的点,
(3)以、、为顶点作平行四边形,作出点关于轴对称点,则易得到的坐标,的坐标,然后利用待定系数法求出直线的解析式,令,得,确定点坐标,也即可得到点坐标.
【详解】
解:(1)四边形为矩形,
,,
沿折叠,使点恰好落在边点上,
,,
在中,,,
,
,
点坐标为;
在中,设,则,
,解得,
在中,
;
(2)过点作于,则,
沿折叠得到,
,故可表示为,
在中,,即,
解得:,
,即,
点与点重合点与点重合、点与点重合分别是点的两个极限,
点与点重合时,由①的结论可得,此时,
点与点重合时,,
综上可得:,.
(3)以、、为顶点作平行四边形,作出点关于轴对称点,如图:
的坐标为,,
的坐标为,
设直线的解析式为,
把,代入得
,,
解得,,
直线的解析式为,
令,得,解得,
,.
【点睛】
本题考查了折叠的性质、矩形的性质及最短路径的知识,综合性较强,难度较大,注意掌握折叠前后两图形全等,即对应线段相等,对应角相等,在求自变量范围的时候,要注意寻找极限点,不要想当然的判断.
25.(1);(2);(3)①;②PB的长度为8或或.
【分析】
(1)证明Rt△MAD≌Rt△MAB′(AAS),即可得到∠B′AM=∠DAM;
(2)由Rt△MAD≌Rt△MAB′(AAS),得到AD
解析:(1);(2);(3)①;②PB的长度为8或或.
【分析】
(1)证明Rt△MAD≌Rt△MAB′(AAS),即可得到∠B′AM=∠DAM;
(2)由Rt△MAD≌Rt△MAB′(AAS),得到AD=AB′=AB=a,即可求得a=6;
(3)①利用勾股定理求出AC,在Rt△PB′C中利用勾股定理即可解决问题;
②分三种情形分别求解即可,如图2-1中,当∠PCB′=90°时.如图2-2中,当∠PCB′=90°时.如图2-3中,当∠CPB′=90°时,利用勾股定理即可解决问题.
【详解】
解:(1)∵四边形ABCD是矩形,
∴∠D=∠B=∠BAD=90°,
∵△PAB′与△PAB关于直线PA的对称,
∴△PAB≌△PAB′,
∴AB′=AB,∠AB′P=∠B=90°,∠B′AP=∠BAP,
∵∠PAM=45°,即∠B′AP +∠B′AM =45°,
∴∠DAM +∠BAP =45°,
∴∠DAM=∠B′AM,
∵AM=AM,
∴Rt△MAD≌Rt△MAB′(AAS),
∴∠B′AM=∠DAM;
(2)∵由(1)知:Rt△MAD≌Rt△MAB′,
∴AD=AB′=AB=a,
∵AD=BC=6,
∴a=6;
(3)①在Rt△ABC中,∠ABC=90°,
由勾股定理得:AC==10,
设PB=x,则PC=6−x,
由对称知:PB′=PB=x,∠AB′P=∠B=90°,
∴∠PB′C=90°,
又∵AB′=AB=8,
∴B′C=2,
在Rt△PB′C中, ,
∴(6−x)2=22+x2,
解得:x=,
即PB=;
②∵△PAB′与△PAB关于直线PA的对称,
∴△PAB≌△PAB′,
∴AB′=AB,∠AB′P=∠B=90°,PB′=PB,
设PB′=PB=t,
如图2-1中,当∠PCB'=90°,B'在CD上时,
∵四边形ABCD是矩形,
∴∠D=90°,AB′=AB=CD=8,AD=BC=6,
∴DB′,
∴CB′=CD−DB′=8−2,
在Rt△PCB'中,∵B'P2=PC2+B'C2,
∴t2= (8−2)2+(6−t)2,
∴t=;
如图2-2中,当∠PCB'=90°,B'在CD的延长线上时,
在Rt△ADB'中,DB′,
∴CB′=8+2,
在Rt△PCB'中,则有:(8−2)2+(t−3)2=t2,
解得t=;
如图2-3中,当∠CPB'=90°时,
∵∠B=∠B′=∠BPB′=90°,AB=AB′,
∴四边形AB'PB为正方形,
∴BP=AB=8,
∴t=8,
综上所述,PB的长度为8或或;
【点睛】
本题考查了轴对称的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.
展开阅读全文