资源描述
初二数学上册压轴题试卷含解析(一)
1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式.
(1)________;
(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由;
(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系.
2.已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解.
(1)求点A的坐标;
(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;
(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.
3.如图,中,,.
(1)如图1,,,求证:;
(2)如图2,,,请直接用几何语言写出、的位置关系____________;
(3)证明(2)中的结论.
4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
5.如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.
(1)求的取值范围.
(2)当时,问与是否全等,并说明理由.
(3)时,若为等腰三角形,求的值.
6.方法探究:
已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”.
问题解决:
(1)对于二次多项式,我们把x= 代入该式,会发现成立;
(2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;
(3)对于多项式,用“试根法”分解因式.
7.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
8.【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则ABD≌ACE.
【材料理解】(1)在图1中证明小明的发现.
【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°,其中正确的有_____.(将所有正确的序号填在横线上)
【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,∠ABE=∠BDC=60°,试探究∠A与∠BED的数量关系,并证明.
【参考答案】
2.(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
解析:(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论.
(1)
解得
(2)
是等腰三角形,理由如下:
由点A(a,0)、点B(b,0)为x轴上两点,且
可得,OA=OB
OC垂直平分AB
,
是等腰三角形
(3)
,理由如下:
如图,延长GF至点M,使FM=FG,连接CG、CM、AM
F为AD的中点
在和中
垂直平分
,BG平分
为等边三角形,
在和中
即是等腰三角形
为等边三角形
在 中, .
【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键.
3.(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)
解析:(1);(2);(3)的值是定值,9.
【分析】(1)先求出方程的解为,即可求解;
(2)由“SAS”可证△CAO≌△DAB,可得∠DBA=∠COA=90°,由四边形内角和定理可求解;
(3)由“SAS”可证△ABG≌△OBF可得OF=AG,∠BAG=∠BOF=60°,可求∠OAH=60°,可得AH=6,即可求解.
【详解】解:(1)∵是方程的解.
解得:,
检验当时,,,
∴是原方程的解,
∴点;
(2)∵△ACD,△ABO是等边三角形,
∴AO=AB,AD=AC,∠BAO=∠CAD=60°,
∴∠CAO=∠BAD,且AO=AB,AD=AC,
∴△CAO≌△DAB(SAS)
∴∠DBA=∠COA=90°,
∴∠ABE=90°,
∵∠AOE+∠ABE+∠OAB+∠BEO=360°,
∴∠BEO=120°;
(3)GH−AF的值是定值,
理由如下:∵△ABC,△BFG是等边三角形,
∴BO=AB=AO=3,FB=BG,∠BOA=∠ABO=∠FBG=60°,
∴∠OBF=∠ABG,且OB=AB,BF=BG,
∴△ABG≌△OBF(SAS),
∴OF=AG,∠BAG=∠BOF=60°,
∴AG=OF=OA+AF=3+AF,
∵∠OAH=180°−∠OAB−∠BAG,
∴∠OAH=60°,且∠AOH=90°,OA=3,
∴AH=6,
∴GH−AF=AH+AG−AF=6+3+AF−AF=9.
【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.
4.(1)见解析;(2)⊥;(3)见解析
【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;
(2)由于要得出、的位置关系,结
解析:(1)见解析;(2)⊥;(3)见解析
【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;
(2)由于要得出、的位置关系,结合图形可猜想:⊥;
(3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证.
【详解】解:(1)证明:∵,,
∴∠ADC=∠E=90°,∠DAC+∠ACD=90°,
∵,
∴∠DAC+∠BAE=90°,
∴∠ACD=∠BAE,
在△DAC和△EBA中,
∵∠ADC=∠E,∠ACD=∠BAE,AC=AB,
∴(AAS);
(2)结合图形可得:⊥;
故答案为:⊥;
(3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P,
∵AF=CE,
∴AE=CF,
∵,
∴∠1=∠2,
∵∠BAE=∠FCP=90°,
∴△BAE≌△FCP,
∴∠3=∠P,AB=CP,
∵,,
∴∠ABC=∠ACB=45°,
∵∠PCP=90°,AB=CP,
∴∠FCD=45°,AC=PC,
∴∠ACB=∠PCD,
∵CD=CD,
∴△ACD≌△PCD,
∴∠4=∠P,
∵∠3=∠P,
∴∠3=∠4,
∵∠3+∠2=90°,
∴∠4+∠2=90°,
∴∠AGE=90°,即⊥.
【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键.
5.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB
解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题;
(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题;
②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.
【详解】解:(1)∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
∴∠ABC=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
故答案为:;
(2)①.
理由:∵,
∴.
即.
又,
∴.
∴.
∴.
∴.
∵,
∴.
②如图:当点D在射线BC上时,α+β=180°,连接CE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
在△ABC中,∠BAC+∠B+∠ACB=180°,
∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,
即:∠BCE+∠BAC=180°,
∴α+β=180°,
如图:当点D在射线BC的反向延长线上时,α=β.连接BE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∴∠ABD=∠ACE=∠ACB+∠BCE,
∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,
∵∠BAC=180°-∠ABC-∠ACB,
∴∠BAC=∠BCE.
∴α=β;
综上所述:点D在直线BC上移动,α+β=180°或α=β.
【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.
6.(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行
解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;
(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.
【详解】(1)依题意,
,
.
(2)时,与全等,
证明:时,,,在和中,
∵,,点是的中点,
,,,
(SAS).
(3)①当时,有;
②当时,
∵,
∴,
∴
有,
∵,
∴(舍去);
③当时,
∵,
∴,
∴
有,
∴;
综上,当或时,为等腰三角形.
【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.
7.(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(
解析:(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可.
(1)
解:当x=±2时,x2-4=0,
故答案为:±2;
(2)
解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),
∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,
∴1-a=1,b=-3,
∴a=0,b=-3;
(3)
解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,
∴多项式有因式(x-2),
设另一个因式为(x2+ax+b),
∴x3+4x2-3x-18=(x-2)(x2+ax+b),
∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,
∴a-2=4,2b=18,
∴a=6,b=9,
∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2.
【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
8.(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明
解析:(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得
(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.
【详解】(1)∵点在x轴负半轴上,
∴,,
∵,,
∴,
∵,
∴,
∴,
如答图1,在x轴的正半轴上取点C,使,连接BC,
∵,
∴,
又∵,
∴,
∴,
∴是等边三角形,
∴;
(2)如答图2,连接BM,
∴是等边三角形,
∵,,
∵∠,
∴,
∴,
∵D为AB的中点,
∴,
∵,
∴,
∴,在和中,
∴,
∴,即,
∴,
∴为等边三角形,
∴,∴;
(3)如答图3,过点F作轴交CB的延长线于点N,
则,
∵,
∴,
在和中,
∴,
∴,,
∵,
∴,
又∵E是OC的中点,设,
∴等边三角形ABC的边长是4a,,
∵,
∴,
在和中,
∴,
∴,
又∵,
∴,
,
∴.
【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
9.(1)见解析;(2)①②③;(3),证明见解析
【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三
解析:(1)见解析;(2)①②③;(3),证明见解析
【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDC是等边三角形,得出BD=BC,∠DBC=60°,进而判断出△ABD≌△EBC(SAS),由全等三角形的性质即可得出结论.
【详解】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)解:如图2,∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°−∠ADB−∠DGO=180°−∠AEC−∠AGE,
∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,连接CF,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°−∠OFC=120°,
∴∠AOE=180°−∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=CE,
∵BD=CE,
∴CF=OF=BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)∠A+∠BED=180°.
如图3,
证明:∵∠BDC=60°,BD=CD,
∴△BDC是等边三角形,
∴BD=BC,∠DBC=60°,
∵∠ABC=60°=∠DBC,
∴∠ABD=∠CBE,
∵AB=BE,
∴△ABD≌△EBC(SAS),
∴∠BEC=∠A,
∵∠BED+∠BEC=180°,
∴∠A+∠BED=180°.
【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键.
展开阅读全文