资源描述
人教版部编版八年级下册数学期末试卷专题练习(word版
一、选择题
1.若二次根式在实数范围内有意义,则x的取值范围是( )
A.x≠﹣3 B.x≥﹣3 C.x≤﹣3 D.x>﹣3
2.若△ABC的三边a,b,c,满足,则△ABC是( )
A.等腰三角形 B.直角三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
3.四边形BCDE中,对角线BD、CE相交于点F,下列条件不能判定四边形BCDE是平行四边形的是( )
A.BC∥ED,BE=CD B.BF=DF,CF=EF
C.BC∥ED,BE∥CD D.BC=ED.BE=CD
4.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( )
A.36.1℃ B.36.6℃ C.36.5℃ D.36.9℃
5.已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是
A. B. C. D.
6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()
A.50° B.60° C.70° D.80°
7.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF= ( )
A.3 B.4 C.5 D.6
8.如图1,在矩形ABCD的边AD上取一点E,连接BE.点M,N同时以1cm/s的速度从点B出发,分别沿折线B-E-D-C和线段BC向点C匀速运动.连接MN,DN,设点M运动的时间为t s,△BMN的面积为S cm2,两点运动过程中,S与t的函数关系如图2所示,则当点M在线段ED上,且ND平分∠MNC时,t的值等于( )
A.2+2 B.4+2 C.14﹣2 D.12﹣2
二、填空题
9.已知|a+1|+=0,则ab=_____.
10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
11.在中,,,,则线段AC的长为________.
12.如图,点E是矩形纸片ABCD的边BC上的一动点,沿直线AE折叠纸片,点B落在点位置,连接C.若AB=3,BC=6,则线段C长度的最小值为 ________________.
13.在平面直角坐标系中,一次函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),则一次函数y=kx+b的解析式为 ____.
14.如图,O是矩形ABCD的对角线AC、BD的交点,OM⊥AD,垂足为M,若AB=8,则OM长为_______.
15.如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
16.如图,在中,,,将沿过点的某直线翻折后,点恰好与重合,则折痕的长为________.
三、解答题
17.计算:
(1);
(2).
18.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?
19.如图,在正方形网格中,点,,都在格点上,若小方格边长为.
(1)试判断是什么形状,并说明理由;
(2)若为边的中点,连接,求的长.
20.如图,在中,,于点H,E是A上一点,过点B作,交的延长线于点F,连接,.
(1)求证:四边形是菱形;
(2)若,求的度数.
21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a=,求的值.刘峰想了想,很快就算出来了,下面是他的解题过程:
解:∵,
又∵a=,
∴,
∴原式=.
你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.
22.学校准备印制一批纪念册.纪念册每册需要张大小的纸,其中张为彩页,张为黑白页.印刷费(元)与印数(千册)间的关系见下表:
印数(单位:千册)
彩色(单位:元张)
黑白(单位:元张)
(1)若,求出与之间的函数解析式;
(2)若,求出与之间的函数解析式;
(3)若学校印制这批纪念册的印刷费为元则印刷的纪念册有多少册?
23.已知如图1,四边形是正方形, .
如图1,若点分别在边上,延长线段至,使得,若求的长;
如图2,若点分别在边延长线上时,求证:
如图3,如果四边形不是正方形,但满足且,请你直接写出的长.
24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0).
(1)求直线AB的函数表达式;
(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标;
(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由.
25.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.
(1)求证:△ACN≌△CBM;
(2)∠CPN= °;(给出求解过程)
(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)
(4)图③中∠CPN= °;(直接写出答案)
(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n的代数式表示,直接写出答案).
26.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,∠BAC=∠DAE.
(1)如图①,连接BE、CD,求证:BE=CD;
(2)如图②,连接BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长;
(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明.
【参考答案】
一、选择题
1.D
解析:D
【分析】
直接利用二次根式有意义的条件结合分式有意义的条件分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则且,
解得:.
故选:D.
【点睛】
本题主要考查了二次根式有意义的条件以及分式有意义的条件,解题的关键是正确把握相关有意义的条件.
2.C
解析:C
【分析】
根据非负数的性质可得关于a、b、c的等式,继而可得a、b、c三边的数量关系,进而可判断出△ABC的形状.
【详解】
解:∵,
∴a-b=0且a2+b2-c2=0,
∴a=b且a2+b2=c2,
∴△ABC是等腰直角三角形,
故选C.
【点睛】
本题考查了等腰直角三角形的判定以及非负数的性质,熟练掌握非负数的性质以及勾股定理的逆定理等知识是解题的关键.
3.A
解析:A
【解析】
【分析】
根据平行四边形的判定定理分别进行分析即可.
【详解】
解:A、不能判定四边形ABCD是平行四边形,故此选项符合题意;
B、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;
C、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;
D、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;
故选;A.
【点睛】
本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键.
4.C
解析:C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据,进行求解即可.
【详解】
解:∵36.5℃出现了两次,出现的次数最多,
∴这组数据的众数为36.5℃,
故选C.
【点睛】
本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义.
5.D
解析:D
【分析】
本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可.
【详解】
解:整理得,,
所以,
解得;
因为,
,
所以,
所以是直角三角形,,
设第三边c上的高的值是h,
则的面积,
所以.
故选:D.
【点睛】
本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
6.B
解析:B
【解析】
【详解】
分析:如图,连接BF,
在菱形ABCD中,∵∠BAD=80°,
∴∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD,
∠ABC=180°﹣∠BAD=180°﹣80°=100°.
∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°.
∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°.
∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS).
∴∠CDF=∠CBF=60°.故选B.
7.A
解析:A
【解析】
【详解】
∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
∴.
∵点E、F分别为AC、AB的中点,
∴EF是△ABC的中位线,
∴.
故选A.
8.D
解析:D
【分析】
分析图像得出BE和BC,求出AB,作EH⊥BC于H,作EF∥MN,M1N2∥EF,作DG⊥M1N2于点G,求出EF和M1N2,在△DM1N2中,利用面积法列出方程,求出t值即可.
【详解】
解:由题意可得:点M与点E重合时,t=5,则BE=5,
当t=10时,点N与点C重合,则BC=10,
∵当t=5时,S=10,
∴,解得:AB=4,
作EH⊥BC于H,作EF∥MN,M1N2∥EF,作DG⊥M1N2于点G,
则EH=AB=4,BE=BF=5,
∵∠EHB=90°,
∴BH==3,
∴HF=2,
∴EF=,
∴M1N2=,
设当点M运动到M1时,N2D平分∠M1N2C,
则DG=DC=4,M1D=10-AE-EM1=10-3-(t-5)=12-t,
在△DM1N2中,,
即,
解得:,
故选D.
【点睛】
本题考查了动点问题的函数图像,矩形的性质,勾股定理,面积法,解题的关键是读懂图象,了解图象中每个点的实际含义.
二、填空题
9.-2
【解析】
【分析】
根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【详解】
解:由题意得,a+1=0,b﹣2=0,
解得a=﹣1,b=2,
所以,ab=﹣1×2=﹣2.
故答案为:﹣2.
【解答】
本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
10.2
【解析】
【分析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=2.
故答案为2.
【点睛】
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
11.
【解析】
【分析】
根据勾股定理即可得出答案
【详解】
解:∵,,,
∴
故答案为:
【点睛】
本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
12.A
解析:3﹣3
【分析】
连接AC,当A、、C共线时,C的值最小,进而解答即可.
【详解】
解:如图,连接AC.
∵折叠,
∴AB=A=3,
∵四边形ABCD是矩形,
∴∠B=90°,
∴AC=,
∵C≥AC﹣A,
∴当A、、C共线时,C的值最小为:3﹣3,
故答案为:3﹣3.
【点睛】
本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,作出正确的辅助线,属于中考常考题型.
13.A
解析:y=2x+4
【分析】
根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.
【详解】
解:∵函数y=kx+b的图象与直线y=2x平行,
∴k=2,
又∵函数y=2x+b的图象经过点A(1,6),
∴6=2+b,
∴b=4,
∴一次函数的解析式为y=2x+4,
故答案为y=2x+4.
【点睛】
本题考查了一次函数的性质,待定系数法求解析式,理解两条直线平行,解析式中的值相等是解题的关键.
14.A
解析:4
【解析】
【分析】
根据三角形的中位线即可求解.
【详解】
∵O是矩形ABCD的对角线AC、BD的交点,
∴O是AC中点,
又OM⊥AD,AD⊥CD
∴,又AB=CD=8
故OM=4
故填:4
【点睛】
此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.
15.(-3,4)
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即
解析:(-3,4)
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.
【详解】
解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,
∴A(0,4),D(-1,0),C(0,-2),
∴AC=6;
联立 ,
解得,
∴点B的坐标为(-2,2),
∴,
∵,
∴可设直线AE的解析式为,
∴,
∴直线AE的解析式为,
∵E是直线AE与x轴的交点,
∴点E坐标为(2,0),
∴DE=3,
∴,
∴,
∴,
∴点P的坐标为(-3,4),
故答案为:(-3,4).
【点睛】
本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.
16.【分析】
由折叠得BE=CE=3,∠AEB=∠AEC=90°,再利用勾股定理求出AE即可.
【详解】
由平行四边形得BC=AD=6,由折叠得BE=CE=3,∠AEB=∠AEC=90°,
∵,
∴A
解析:
【分析】
由折叠得BE=CE=3,∠AEB=∠AEC=90°,再利用勾股定理求出AE即可.
【详解】
由平行四边形得BC=AD=6,由折叠得BE=CE=3,∠AEB=∠AEC=90°,
∵,
∴AE==4,
故答案为:4.
【点睛】
此题考查折叠的性质,勾股定理,正确理解折叠的性质得到BE=CE=3,∠AEB=∠AEC=90°是解题的关键.
三、解答题
17.(1);(2)
【分析】
(1)先化简每个二次根式,再合并同类二次根式即可;
(2)先计算并化简括号内的,合并结果,再算除法.
【详解】
解:(1)
=
=
=;
(2)
=
=
=
=
【点睛】
解析:(1);(2)
【分析】
(1)先化简每个二次根式,再合并同类二次根式即可;
(2)先计算并化简括号内的,合并结果,再算除法.
【详解】
解:(1)
=
=
=;
(2)
=
=
=
=
【点睛】
本题主要考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
18.##
【分析】
在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可.
【详解】
解:∵在中,
∴
∴
∵在中
∴
∴
解析:##
【分析】
在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可.
【详解】
解:∵在中,
∴
∴
∵在中
∴
∴.
【点睛】
本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.
19.(1)三角形ABC是直角三角形,理由见解析;(2)
【解析】
【分析】
(1)先利用勾股定理分别求出AB,BC,AC的长,然后利用勾股定理的逆定理求解即可;
(2)根据直角三角形斜边上的中线等于斜边
解析:(1)三角形ABC是直角三角形,理由见解析;(2)
【解析】
【分析】
(1)先利用勾股定理分别求出AB,BC,AC的长,然后利用勾股定理的逆定理求解即可;
(2)根据直角三角形斜边上的中线等于斜边的一半求解即可.
【详解】
解:(1)三角形ABC是直角三角形,理由如下:
由题意得:,,,
∴,
∴三角形ABC是直角三角形;
(2)∵D为BC边的中点,三角形ABC是直角三角形,∠BAC=90°,
∴.
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,直角三角形斜边上的中线等于斜边的一半,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)见解析;(2)90°
【分析】
(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;
(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数.
【详解】
解析:(1)见解析;(2)90°
【分析】
(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;
(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数.
【详解】
解:(1)证明:∵,,
∴,,
∵,
∴,
∴,
∴,
∴四边形是平行四边形.
又∵,
∴四边形是菱形;
(2)∵四边形是菱形,
∴.
∵,,
∴.
∵,
∴,
∵,
∴.
即.
【点睛】
本题考查菱形的判定与性质,熟练掌握全等三角形的判定和性质以及菱形的判定与性质是解题的关键.
21.答案见解析.
【解析】
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
刘峰的解法错误,
原因是:错误地运用了=这个公式,
正确解法是:∵a==<1,
∴a﹣1<0,
∴=
=
=
=
解析:答案见解析.
【解析】
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
刘峰的解法错误,
原因是:错误地运用了=这个公式,
正确解法是:∵a==<1,
∴a﹣1<0,
∴=
=
=
=﹣,
∴原式=﹣.
【点睛】
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
22.(1);(2);(3)6.5千册
【分析】
(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;
(3)根据(1)的解析式可得5≤x<1
解析:(1);(2);(3)6.5千册
【分析】
(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;
(3)根据(1)的解析式可得5≤x<10,将y=71500代入(2)求得的解析式即可求解.
【详解】
解:(1)根据题意得:当时,
,
∴;
(2)由题意得:当时,
,
∴;
(3)当1≤x<5时,y=13000x≤65000,
∵学校印制这批纪念册的印刷费为71500元,
∴5≤x<10.
此时y=11000x=71500,
∴x=6.5,
则印刷的纪念册有6.5千册.
【点睛】
本题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系得出函数关系式.
23.(1);(2)见解析;(3)
【分析】
(1)先用SAS证ABG≌ADF,可得AG=AF,∠BAG=∠DAF,又可证∠EAG=∠EAF,故可用SAS证GAE≌FAE,EF=GE,即EF长度可求;
(
解析:(1);(2)见解析;(3)
【分析】
(1)先用SAS证ABG≌ADF,可得AG=AF,∠BAG=∠DAF,又可证∠EAG=∠EAF,故可用SAS证GAE≌FAE,EF=GE,即EF长度可求;
(2)在DF上取一点G,使得DG=BE, 连接AG,先用SAS证ABE≌ADG,可得AE=AG,∠BAE=∠DAG,又可证∠EAF=∠GAF,故可用SAS证AEF≌AGF,可得EF=GF,且DG=BE,故EF=DF-DG=DF-BE;
(3)在线段DF上取BE=DG,连接AG,求证∠ABE=∠ADC,即可用SAS证ABE≌ADG,可得AE=AG,∠BAE=∠DAG,又可证∠EAF=∠GAF,故可用SAS证AEF≌AGF,可得EF=GF,设BE=x,则CE= 7+x,EF=18-x,根据勾股定理:,即可求得BE的长度.
【详解】
解:(1)证明:如图1所示,在正方形ABCD中,AB=AD,∠BAD=90°,
在ABG和ADF中,
∴ABG≌ADF(SAS),
∴AG=AF,∠BAG=∠DAF,
又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,
∴∠EAG=∠FAG-∠EAF=45°=∠EAF,
在GAE和FAE中,
∴GAE≌FAE(SAS),
∴EF=GE=GB+BE=2+3=5;
(2)如下图所示,在DF上取一点G,使得DG=BE, 连接AG,
∵四边形ABCD是正方形,故AB=AD,∠ABE=∠ADG=90°,
在ABE和ADG中,
∴ABE≌ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,
∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,
在AEF和AGF中,
∴AEF≌AGF(SAS),
∴EF=GF,且DG=BE,
∴EF=DF-DG=DF-BE;
(3)BE=5,
如下图所示,在线段DF上取BE=DG,连接AG,
∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,
∴∠ABE=∠ADC,
在ABE和ADG中,
∴ABE≌ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,
∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,
在AEF和AGF中,
∴AEF≌AGF(SAS),
∴EF=GF,
设BE=x,则CE=BC+BE =7+x,EF=GF=DC+CF-DG= DC+CF-BE=18-x,
在直角三角形ECF中,根据勾股定理:,
即:,解得x=5,
∴BE=x=5.
【点睛】
本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.
24.(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,
解析:(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,设F(m,n),进而建立方程组求解,即可得出结论;
(3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;②当时,当点E在AB上方时,根据AE∥BC,即可得出结论;③当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论.
【详解】
(1)设直线的函数表达式为,
直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0),
直线的函数表达式为;
(2)如图,过点分别引轴的垂线,交轴于两点,
∵点A(0,3),点B(-4,0),
∴OA=3,OB=4,
∴AB=5,
由折叠知,AD=OA=3,
设
,
解得:
在上,
解得,
,
过点F作FM⊥x轴于M,延长HD交FM于N,
∴∠BMF=∠FND=90°,
∴∠BFM+∠FBM=90°,
∵△BFD是等腰直角三角形,
∴BF=DF,∠BFD=90°,
∴∠BFM+∠DFN=90°,
∴∠FBM=∠DFN,
∴△BMF≌△FND(AAS),
∴BM=FN,FM=DN,
设F(m,n),
则
;
(3)设OC=a,则BC=4-a,
由折叠知,∠BDC=∠ADC=∠AOC=90°,CD=OC=a,
在Rt△BDC中,,
∴,
∴a=,
,
∵点A,B,E为顶点的三角形与△ABC全等,
①当△ABC≌△ABE'时,
∴BE'=BC,∠ABC=∠ABE',
连接CE'交AB于D,
则CD=E'D,CD⊥AB,由(1)知,
设E'(b,c),
∴
∴,
∴;
②当△ABC≌BAE时,当点E在AB上方时,
∴AC=BE,BC=AE,,
∴AE∥BC,
∴;
③当点E在AB下方时,AC=BE'',BC=AE'',
,
,
当时,
,
,,
过点作轴于,过点作轴,过点作,
,,
,
,
即,
,
,
,
点,,
,=,
,
∴,
满足条件的点E的坐标为或或.
【点睛】
本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键.
25.(1)见解析;(2)120;(3)90;(4)72;(5).
【分析】
(1)利用等边三角形的性质得到BC=AC,∠ACB=∠ABC,从而得到△ACN≌△CBM.
(2)利用全等三角形的性质得到∠C
解析:(1)见解析;(2)120;(3)90;(4)72;(5).
【分析】
(1)利用等边三角形的性质得到BC=AC,∠ACB=∠ABC,从而得到△ACN≌△CBM.
(2)利用全等三角形的性质得到∠CAN=∠BCM,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.
(3)利用正方形(或正五边形)的性质得到BC=DC,∠ABC=∠BCD,从而判断出△DCN≌△CBM,再利用全等三角形的性质得到∠CDN=∠BCM,再利用内角和定理即可得到答案.
(4)由(3)的方法即可得到答案.
(5)利用正三边形,正四边形,正五边形,分别求出∠CPN的度数与边数的关系式,即可得到答案.
【详解】
(1)∵△ABC是等边三角形,
∴BC=AC,∠ACB=∠BAC=∠ABC=60,
∴∠ACN=∠CBM=120,
在△CAN和△CBM中,
,
∴△ACN≌△CBM.
(2)∵△ACN≌△CBM.
∴∠CAN=∠BCM,
∵∠ABC=∠BMC+∠BCM,∠BAN=∠BAC+∠CAN,
∴∠CPN=∠BMC+∠BAN
=∠BMC+∠BAC+∠CAN
=∠BMC+∠BAC+∠BCM
=∠ABC+∠BAC
=60+60,
=120,
故答案为:120.
(3)将等边三角形换成正方形,
∵四边形ABCD是正方形,
∴BC=DC,∠ABC=∠BCD=90,
∴∠MBC=∠DCN=90,
在△DCN和△CBM中,
,
∴△DCN≌△CBM,
∴∠CDN=∠BCM,
∵∠BCM=∠PCN,
∴∠CDN=∠PCN,
在Rt△DCN中,∠CDN+∠CND=90,
∴∠PCN+∠CND=90,
∴∠CPN=90,
故答案为:90.
(4)将等边三角形换成正五边形,
∴∠ABC=∠DCB=108,
∴∠MBC=∠DCN=72,
在△DCN和△CBM中,
,
∴△DCN≌△CBM,
∴∠BMC=∠CND,∠BCM=∠CDN,
∵∠BCM=∠PCN,
∴∠CND=∠PCN,
在△CDN中,∠CDN+∠CND=∠BCD=108,
∴∠CPN=180-(∠CND+∠PCN)
=180-(∠CND+∠CDN)
=180-108,
=72,
故答案为:72.
(5)正三边形时,∠CPN=120=,
正四边形时,∠CPN=90=,
正五边形时,∠CPN=72=,
正n边形时,∠CPN=,
故答案为: .
【点睛】
此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.
26.(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析
【分析】
(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论;
(2)先求出∠CDA=∠ADE=30°,进而
解析:(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析
【分析】
(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论;
(2)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论;
(3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BE=CD,∠BEA=∠CDA=45°,由勾股定理可得2AC2=CD2+CE2.
【详解】
证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD;
又∵AB=AC,AD=AE,
∴△ACD≌△ABE(SAS),
∴CD=BE;
(2)如图②,连接BE,
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∴DE=AD=3,∠ADE=∠AED=60°,
∵CD⊥AE,
∴∠CDA=∠ADE=×60°=30°,
∵由(1)得△ACD≌△ABE,
∴BE=CD=5,∠BEA=∠CDA=30°,
∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,
∴.
(3)2AC2=CD2+CE2,
理由如下:连接BE,
∵AD=AE,∠DAE=90°,
∴∠D=∠AED=45°,
由(1)得△ACD≌△ABE,
∴BE=CD,∠BEA=∠CDA=45°,
∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,
在Rt△BEC中,BC2=BE2+CE2,
在Rt△ABC中,AB2+AC2=BC2,
∴2AC2=CD2+CE2.
【点睛】
此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键.
展开阅读全文