收藏 分销(赏)

八年级上学期压轴题模拟数学综合检测试卷解析(一).doc

上传人:快乐****生活 文档编号:1888003 上传时间:2024-05-11 格式:DOC 页数:61 大小:2.13MB
下载 相关 举报
八年级上学期压轴题模拟数学综合检测试卷解析(一).doc_第1页
第1页 / 共61页
八年级上学期压轴题模拟数学综合检测试卷解析(一).doc_第2页
第2页 / 共61页
八年级上学期压轴题模拟数学综合检测试卷解析(一).doc_第3页
第3页 / 共61页
八年级上学期压轴题模拟数学综合检测试卷解析(一).doc_第4页
第4页 / 共61页
八年级上学期压轴题模拟数学综合检测试卷解析(一).doc_第5页
第5页 / 共61页
点击查看更多>>
资源描述

1、八年级上学期压轴题模拟数学综合检测试卷解析(一)2已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由2在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,于D,交y轴于点E,求证:平分(3)如图(2),点F为的中点,点G为x正

2、半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果3请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,C

3、DP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 5已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由5如图1,将两块全等的三角板拼在一起,其中ABC的边BC在直线l上,ACBC且AC

4、 = BC;EFP的边FP也在直线l上,边EF与边AC重合,EFFP且EF = FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将三角板EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将三角板EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由6(1)如图1,已知:在ABC中,BAC=90,AB=AC,直线m经过点A,

5、BD直线m,CE直线m,垂足分别为点D、E 证明:DE=BD+CE(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可)(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有BDA=AEC=BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若BDA=AEC=BAC,试证明DEF是等边三角形7如图,在ABC中,点D为直线BC上一动点,DAE

6、90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD8如图,和中,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点(1)求证:;(2)设,请用含的式子表示,并求的最大值;(3)当时,的取值范围为,求出,的值【参考答案】2(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先

7、求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB

8、=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG

9、=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等解析:(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判

10、定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BFBFO=GFH,进而得出OFH=BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可【详解】解:(1) , ,即,(2)如图,过点O作于M,于N,根据题意可知,OAOB6在和中, , ,点O一定在CDB的角平分线上,即OD平分CDB(3)如图,连接OF,是等腰直角三角形且点F为AB的中点,OF平分AOB又,又,在和中 ,故不发生变化,且【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所

11、学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题4(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方解析:(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3)

12、,P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分B

13、AD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CD

14、B),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型5(1)60;(2)

15、见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,

16、DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CEF中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=AB

17、C=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题57已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0

18、,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,O

19、A=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,AC=DC,CEACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG

20、=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题58已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延长交y轴于点E,求的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运

21、动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围(1);(2);(3)的值是定值,9【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAODAB,可得DBACOA90,由四边形内角和定理可求解;(3)由“SAS”可证ABGOBF可得OFAG,BAGBOF60,可求OAH60,可得AH6,即可求解【详解】解:(1)是方程的解解得:,检验当时,是原方程的解,点;(2)ACD,ABO是等边三角形,AOAB,ADAC,BAOCAD60,CAOBAD,且AOAB,ADAC,CAODAB(SAS)DBACOA90,ABE90,AOEABEOABBEO360,BEO120;(

22、3)GHAF的值是定值,理由如下:ABC,BFG是等边三角形,BOABAO3,FBBG,BOAABOFBG60,OBFABG,且OBAB,BFBG,ABGOBF(SAS),OFAG,BAGBOF60,AGOFOAAF3AF,OAH180OABBAG,OAH60,且AOH90,OA3,AH6,GHAFAHAGAF63AFAF9【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力59等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大

23、小是_图2(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点

24、睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.60、在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小(1);(2)见解析;APB22.5【分析】(

25、1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDB

26、AOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题61如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,BAC=30,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连B

27、E(1)如图1,若点P与点C重合,求ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直接写出结果)(1)ABE=90;(2)PD+AC=CE,见解析;(3)1【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:BPE为等边三角形,则CBE=60,故ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,构造含30度角的直角PCG、直角CPH以及全等三角形(RtPGBRtPHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;(3)分三种情况讨论,根据(2)的解题思路得

28、到PD=AC+CE或PD=CE-AC,将数值代入求解即可【详解】(1)解:如图1,点P与点C重合,CD是线段AB的垂直平分线,PA=PB,PAB=PBA=30,BPE=PAB+PBA=60,PB=PE,BPE为等边三角形,CBE=60,ABE=90;(2)如图2,过P作PHAE于H,连BC,作PGBC交BC的延长线于G,CD垂直平分AB,CA=CB,BAC=30,ACD=BCD=60,GCP=HCP=BCE=ACD=BCD=60,GPC=HPC=30,PG=PH,CG=CH=CP,CD=AC,在RtPGB和RtPHE中,RtPGBRtPHE(HL)BG=EH,即CB+CG=CE-CH,CB+C

29、P=CE-CP,即CB+CP=CE,又CB=AC,CP=PD-CD=PD-AC,PD+AC=CE;(3)当P在C点上方时,由(2)得:PD=CE-AC,当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在线段CD上时,如图3,过P作PHAE于H,连BC,作PGBC交BC于G,此时RtPGBRtPHE(HL),BG=EH,即CB-CG=CE+CH,CB-CP=CE+CP,即CP=CB-CE,又CB=AC,PD=CD-CP=AC-CB+CE,PD=CE-AC当AC=6,CE=2时,PD=2-3=-1,不符合题意;当P在D点下方时,如图4,同理,PD=AC-CE,当AC=6,CE=2时,P

30、D=3-2=1故答案为:1【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论62在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,于D,交y轴于点E,求证:平分(3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果(1),;(2)证明见解析;(3)不变化,【分析】(1)由非负性可

31、求a,b的值,即可求A、B两点的坐标;(2)过点O作于M,于N,根据全等三角形的判定和性质解答即可;(3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BFBFO=GFH,进而得出OFH=BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可【详解】解:(1) , ,即,(2)如图,过点O作于M,于N,根据题意可知,OAOB6在和中, , ,点O一定在CDB的角平分线上,即OD平分CDB(3)如图,连接OF,是等腰直角三角形且点F为AB的中点,OF平分AOB又,又,在和中 ,故不发生变化,且【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定

32、,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题63如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2

33、+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,再由全等三角形的性质的出货BDOE,建立方程求解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,

34、OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A作AQAP,使AQAP,连接OQ,BQ,PQ,则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQA

35、PO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)75,ABPABQ+PBQ30+75105【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键64如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB

36、=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,A

37、O=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又

38、AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键65(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而可求出,

39、即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE为BAM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服