1、2023年人教版中学七7年级下册数学期末学业水平试卷一、选择题125的算数平方根是AB5CD52在下面的四幅图案中,能通过图案(1)平移得到的是( )ABCD3已知点在轴的负半轴上,则点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中是假命题的是()A对顶角相等B在同一平面内,垂直于同一条直线的两条直线平行C同旁内角互补D平行于同一条直线的两条直线平行5如图,ABCD,EBFFBA,EDGGDC,E45,则H为()A22B22.5C30D456如图,数轴上的点A所表示的数为x,则x210的立方根为()A10B10C2D27如图,把一个长方形纸条沿折叠,已知,则为( )A30B28C
2、29D268如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、的位置上,则点的坐标为( )ABCD九、填空题9的算术平方根是_十、填空题10已知点在第四象限,则点A关于y轴对称的坐标是_.十一、填空题11如图,ABC中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12如图,直线 a/b,若1 = 40,则2 的度数是_.十三、填空题13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE6
3、2,则GFE的度数是_十四、填空题14若,且a,b是两个连续的整数,则a+b的值为_十五、填空题15把所有的正整数按如图所示规律排列形成数表若正整数6对应的位置记为,则对应的正整数是_第1列第2列第3列第4列第1行12510第2行43611第3行98712第4行16151413第5行十六、填空题16在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17计算: (1)3-(-5)+(-6) (2)十八、解答题18已知,求下列各式的值;十九、解答题19完成下列证明:已知:如图,ABC中
4、,AD平分BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且ADC+EGD180,过点D作DFAC交EG的延长线于点F求证:EF证明:AD平分BAC(已知),12( ),又ADC+EGD180(已知),EF (同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23( )E (等量代换)又ACDF(已知),3F( )EF(等量代换)二十、解答题20如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b
5、+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积二十一、解答题21已知(1)求实数的值;(2)若的整数部分为,小数部分为求的值;已知,其中是一个整数,且,求的值二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3
6、)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之间的数量关系并证明二十四、解答题24如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系二十五、解答题25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3
7、)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由【参考答案】一、选择题1D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是1,i是一个虚数,是复数的基本单位.【详解】,25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交
8、,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型3A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答【详解】点P(0,a)在y轴的负半轴上,点M(-a,-a+5)在第一象限
9、故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键4C【分析】利用对顶角相等、平行线的判定与性质进行判断选择即可【详解】解:A、对顶角相等,是真命题,不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C、同旁内角互补,是假命题,符合题意;D、平行于同一条直线的两条直线平行,真命题,不符合题意,故选:C【点睛】本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大5B【分析】过作,过作,利用平行线的性质解答即可【详解】解:过作,过作,故选:B【点睛】此题考查平行线的性质,关键是作出辅助
10、线,利用平行线的性质解答6D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7C【分析】由 AE平行BD,可得AED=ADB=32,可求BAE=122,由折叠,可得BAF=EAF,可求EAF=61即可【详解】AE/BD,AED=ADB=32,BAE=BAD+DAE=90+32=122,折叠,BAF=EAF,2EAF=BA
11、E=122EAF=61DAF=EAF-EAD=61-32=29故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键8D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化解析:D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位九、填空题9【详解】试题分析:的
12、平方为,的算术平方根为故答案为考点:算术平方根解析:【详解】试题分析:的平方为,的算术平方根为故答案为考点:算术平方根十、填空题10【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点关键是掌握点
13、的坐标的变化规律十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= DC,3=B,4=5,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC
14、正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题12140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:140解析:140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:140十三、填空题1359【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,A
15、DBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADBC,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键十四、填空题1413【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】分析:先估算出的范围,求出a、b的值
16、,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键十五、填空题15138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,n行n列数的特点为(n2-n解析:138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解
17、决问题【详解】解:正整数6对应的位置记为,即表示第2行第3列的数,表示第12行第7列的数,由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,n行n列的数字是n2-(n-1)=n2-n+1,第12行12列的数字是122-12+1=133,第12行第7列的数字是138,故答案为:138【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度十六、填空题16【分析】利用点P(x,y)的终结点的定义分
18、别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析:【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与
19、点P1的坐标相同,为(2,0),故答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键十七、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌
20、握运算法则是解本题的关键十八、解答题18(1)25;(2)37【分析】(1)利用完全平方差公式求解(2)先配方,再求值【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解解析:(1)25;(2)37【分析】(1)利用完全平方差公式求解(2)先配方,再求值【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键十九、解答题19角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证得EFAD,运用平行线的性质和等量代换得到E3,解析:角平分线
21、的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证得EFAD,运用平行线的性质和等量代换得到E3,继而由ACDF证出3F,从而得到最后结论【详解】证明:AD平分BAC(已知),12(角平分线的定义),又ADC+EGD180(已知),EFAD(同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23(两直线平行,同位角相等)E3(等量代换)又ACDF(已知),3F(两直线平行,内错角相等)EF(等量代换)故答案为:角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【点睛】本题考查了平行线的性质和判
22、定,能熟练地运用定理进行推理是解此题的关键二十、解答题20(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的
23、面积计算三角形ABC的面积【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的A1B1C1如下图所示:;(3)【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21(1);(2)
24、;【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入解析:(1);(2);【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入即可求值;估算的大小,再根据是一个整数,且,可得k和m的值,由此可得的值【详解】解:(1),且,且,即;(2),即的整数部分为4,小数部分为,;,又,是一个整数,且,【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性
25、质,绝对值和算术平方根的非负性(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为20
26、0+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=解析:(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=113;(2)过过作交于
27、,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:点P在BA的延长线上,当在之间时(点不与点,重合),根据平行线的性质即可得出答案【详解】解:(1)过作,;(2),理由如下:如图3,过作交于,又;(3)当在延长线时(点不与点重合),;理由:如图4,过作交于,又,;当在之间时(点不与点,重合),理由:如图5,过作交于,又【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角二十四、解答题24(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3
28、)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键二十五、解答题25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)
29、E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+E
30、AD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用