1、人教版八年级上册期末强化数学检测试题答案一、选择题1下面图形中,不是轴对称图形的是()ABCD22021年11月3日揭晓的2020年度国家自然科学奖,共评出了两项一等奖,其中一项是“有序介孔高分子和碳材料的创制应用”有序介孔材料是上世纪90年代迅速兴起的新型纳米材料,孔径在0.000000002米0.000000005米范围内数据0.000000005用科学记数法可表示为()A510-9B510-8C510-7D0.510-73下列计算正确的是()ABCD4满足()条件时,分式有意义ABCD5下列各式从左到右的变形中,属于因式分解的是()A(x3)(x-3)x2-9B2ab-2ac 2a(b-
2、c)C(m1)2m22m1Dn22n1n(n2)16下面的分式化简,对于所列的每一步运算,依据错误的是()计算:解:原式A:同分母分式的加减法法则B:合并同类项法则C:提公因式法D:等式的基本性质7如图,已知ADBC,再添一个条件仍然不可以证明ACDCAB的是()AABCDBADBCC12DABDC8已知关于x的方式方程的解是非负数,那么a的取值范围是()ABCD9等腰三角形的一个外角等于130,则它的顶角为()A50B80C50或80D40或6510如图, 为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接,以下五个结论:,一定成立的是()AB
3、CD二、填空题11若分式的值为零,则b的值为_12若P()和点Q(2,6)关于y轴对称,则m_,n_13若,则分式的值为_14计算 _15如图,在中,分别是,上的动点,沿在的直线折叠,使点的对应点落在上若为直角三角形,则的度数为_16杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的详解九章算术(1261年)一书中用如图的三角形解释二项和的乘方规律,观察下列各式及其展开式:请你猜想展开式的第三项的系数是_ 17如图,在正五边形中,连接,则的度数是_18如图,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度
4、之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为_ 三、解答题19因式分解:(1)(2)20解分式方程:(1);(2)21如图,ABEDCE,点A,C,B在一条直线上,AED和BEC相等吗?为什么?22探索归纳:(1)如图1,已知为直角三角形,若沿图中虚线剪去,则_(2)如图2,已知中,剪去后成四边形,则_(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想与的关系是_(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究与的关系并说明理由23某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米用60平方米建类摊位的个数恰好是用同样
5、面积建类摊位个数的?(1)求每个,类摊位占地面积各为多少平方米;(2)该社区拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍求最多建多少个类摊位24乘法公式的探究及应用数学活动课上,刘老师准备了若干个如图的三种纸片,种纸片边长为的正方形,种纸片是边长为的正方形,种纸片长为、宽为的长方形并用种纸片一张,种纸片一张,种纸片两张拼成如图的大正方形(1)观察图,请写出下列三个代数式:,之间的等量关系_;(2)若要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片_张(3)根据(1)题中的等量关系,解决如下问题:已知:,求的值:已知求的值25在平面直角坐标系中,A(a,0),B(0,b)
6、分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小26如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M
7、,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)【参考答案】一、选择题2A解析:A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项B、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项A不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部
8、分能够互相重合,所以不是轴对称图形,故选:A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3A解析:A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:数据0.000000005用科学记数法表示为510-9故选:A【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4B解析:B【分析】根据同底数幂乘除法,合并同类项的法则逐一分析
9、判断即可【详解】解:A、,计算不正确,故本选不项符合题意;B、,计算正确,故本选项符合题意;C、和不是同类项,无法合并,故本选项不符合题意;D、和不是同类项,无法合并,故本选项不符合题意故选:B【点睛】本题考查了同底数幂乘除法,合并同类项的法则,解题的关键是熟记法则并灵活运用5D解析:D【分析】直接利用分式有意义的条件解答即可【详解】解:要使分式有意义,x10,解得:x1,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于零,是解题的关键6B解析:B【分析】根据因式分解的定义逐项分析即可【详解】解:A. (x3)(x-3)x2-9是整式乘法,故该选项不符合题意;B
10、. 2ab-2ac 2a(b-c)是因式分解,故该选项符合题意;C. (m1)2m22m1是整式乘法,故该选项不符合题意;D. n22n1n(n2)1不是因式分解,故该选项不符合题意故选:B【点睛】本题考查因式分解的定义,把一个多项式转化成几个整式的积的形式叫因式分解,注意因式分解与整式乘法的区别7D解析:D【分析】根据分式的加减法法则、合并同类项法则、提公因式法、分式的基本性质逐项判断即可得【详解】解:A、:同分母分式的加减法法则,则此项正确,不符合题意;B、:合并同类项法则,则此项正确,不符合题意;C、:提公因式法,则此项正确,不符合题意;D、:分式的基本性质,则此项错误,符合题意;故选:
11、D【点睛】本题考查了分式的加减法、合并同类项、提公因式法、分式的基本性质,熟练掌握各运算法则和性质是解题关键8D解析:D【分析】根据平行线的性质和全等三角形的判定定理逐个判断即可【详解】解:A:根据BCAD、ABCD、ACAC能推出ABCCDA(SSS),故不符合题意;B:ADBC,12,根据BCAD、21ACAC能推出ABCCDA(SAS),故不符合题意;C:根据BCAD、21ACAC能推出ABCCDA(SAS),故不符合题意;D:ABDC,BACDCA,根据BCAD、ACAC和BACDCA不能推出ABCCDA,故符合题意;故选:D【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全
12、等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题难度适中9C解析:C【分析】因为分式方程有解且是非负数,所以不会产生增根,即,然后解的分式方程的根且,化简即可出结果【详解】解:,方程两边同乘以得解得且且故选:C【点睛】本题考查了根据含参数的分式方程解的范围来求参数范围,熟练掌握解分式方程的方法是解题关键,注意增根的检验是易错点10C解析:C【分析】先求出该外角的内角为50,再分50角为底角和顶角两种情况,求出其他两个内角的度数即可【详解】解:等腰三角形的一个外角等于130,等腰三角形的内角为180-130=50,当50角为底角
13、时,顶角为180-250=80,当50为顶角时,底角为(180-50)2=65,故等腰三角形的顶角为50或80,故选:C【点睛】此题考查了等腰三角形的性质:等腰三角形的两个底角相等11B解析:B【分析】根据等边三角形的性质可以得出EACEDCB,就可以得出CAE=CDB,AEC=DBC,通过证明CEGCBH就可以得出CG=CH,GE=HB,可以得出GCH是等边三角形,就可以得出GHC=60,就可以得出GH/AB,由DCHDHC就可以得出CDDH,就可以得出ADDH,根据AFD=EAB+CBD=CDB+CBD=ACD=60,进而得出结论【详解】解:ACD和BCE是等边三角形,AD=AC=CD,C
14、E=CB=BE,ACD=BCE=60ACB=180,DCE=60DCE=BCEACD+DCE=BCE+DCE,ACE=DCB在ACE和DCB中,ACEDCB(SAS),AE=BD,CAE=CDB,AEC=DBC在CEG和CBH中,CEGCBH(ASA),CG=CH,GE=HB,CGH为等边三角形,GHC=60,GHC=BCH,GH/ABAFD=EAB+CBD,AFD=CDB+CBD=ACD=60DHC=HCB+HBC=60+HBC,DCH=60DCHDHC,CDDH,ADDH综上所述,正确的有:故选B【点睛】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内
15、角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键二、填空题12【分析】分式的值为零,即分子为零,分母不为零,据此解答【详解】解:分式的值为零,故答案为:【点睛】本题考查分式的值为零,分式有意义的条件等知识,是基础考点,掌握相关知识是解题关键13 0 -1【分析】利用关于y轴对称的点的性质得出关于m,n的方程组,求解即可得出答案【详解】解:P(,)和点Q(2,6)关于y轴对称,解得故答案为:0,-1【点睛】此题主要考查了关于y轴对称的点的性质,正确理解关于坐标轴对称的点的性质是解题的关键14【分析】由可得,再将原分式变形,将分子、分母化为含有的代数式,进而整体代换求出结果即可【
16、详解】解:,即,=故答案为:【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键150.125【分析】利用积的乘方的法则进行运算即可【详解】解:8202082020(0.125)(0.1258)2020(0.125)(1)2020(0.125)1(0.125)0.125故答案为:0.125【点睛】本题主要考查积的乘方,解答的关键是熟记积的乘方的法则并灵活运用16或【分析】利用三角形内角和定理求出C,再根据折叠的性质求出即可解决问题【详解】解:C=180-A-B,A=70,B=50,C=180-70-50=60解析:或【分析】利用三角形内角和定理求出C,再根据折叠
17、的性质求出即可解决问题【详解】解:C=180-A-B,A=70,B=50,C=180-70-50=60,当=90,=90-60=30,由折叠的性质可知:,=180-75-50=55,当=90时,NMB=45,=180-50-45=85,故答案为85或55【点睛】本题考查翻折变换,三角形内角和定理等知识,解题的关键是熟练掌握基本知识1736【分析】根据杨辉三角形中的规律即可求出的展开式中第三项的系数【详解】解:找规律发现的第三项系数为3=1+2; 的第三项系数为6=1+2+3; 的第三项系数为10=1+2+3+4解析:36【分析】根据杨辉三角形中的规律即可求出的展开式中第三项的系数【详解】解:找
18、规律发现的第三项系数为3=1+2; 的第三项系数为6=1+2+3; 的第三项系数为10=1+2+3+4;归纳发现的第三项系数为1+2+3+(n-2)+(n-1), 展开式的第三项的系数是1+2+3+4+5+6+7+8=36 故答案为:36【点睛】此题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力1872#72度【分析】根据多边形的内角和公式求出正五边形内个内角的度数,在ABC中,根据等腰三角形两底角相等求出BAC的度数,从而得到CAE=BAE-BAC的度数【详解】解:解析:72#72度【分析】根据多边形的内角和公式求出正五边形内个内角的度数,在ABC中,
19、根据等腰三角形两底角相等求出BAC的度数,从而得到CAE=BAE-BAC的度数【详解】解:五边形ABCDE是正五边形,AB=BC,B=BAE=(5-2)1805=108,BAC=BCA=(180-108)=36,CAE=BAE-BAC=108-36=72故答案为:72【点睛】本题考查了多边形的内角和,掌握多边形的内角和=(n-2)180是解题的关键192或6#6或2【分析】设BE=t,则BF=2t,使AEG与BEF全等,由A=B=90可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当B解析:2或6#6或2【分析】设BE=t,则BF=2t,使AEG与BEF全
20、等,由A=B=90可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG【详解】解:设BE=t,则BF=2t,AE=6-t,因为A=B=90,使AEG与BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,BF=AE,AB=6,2t=6-t,解得:t=2,AG=BE=t=2;情况二:当BE=AE,BF=AG时,BE=AE,AB=6,t=6-t,解得:t=3,AG=BF=2t=23=6,综上所述,AG=2或AG=6故答案为:2或6【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键三、解
21、答题20(1)(2)【分析】(1)先题公因式,再利用平方差公式因式分解即可;(2)先利用多项式乘以多项式去括号,然后合并同类项,再利用完全平方公式因式分解即可(1)原式;(2)解析:(1)(2)【分析】(1)先题公因式,再利用平方差公式因式分解即可;(2)先利用多项式乘以多项式去括号,然后合并同类项,再利用完全平方公式因式分解即可(1)原式;(2)原式【点睛】本题考查了因式分解,涉及多项式的乘法运算,熟练掌握公式法和提公因式法是解题的关键21(1)(2)原方程的无解【分析】(1)先把分式方程化为整式方程求解,最后检验即可;(2)先把分式方程化为整式方程求解,最后检验即可(1)解:去分母得:,移
22、项得:,合解析:(1)(2)原方程的无解【分析】(1)先把分式方程化为整式方程求解,最后检验即可;(2)先把分式方程化为整式方程求解,最后检验即可(1)解:去分母得:,移项得:,合并得:,系数化为1得:,经检验是原方程的解;(2)解:去分母得:,移项得:,合并得:,系数化为1得:,经检验是增根,原方程的无解【点睛】本题主要考查了解分式方程,熟知解分式方程的方法是解题的关键22相等见解析【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论【详解】解:相等;理由:ABEDCE,AEB=DEC,DEC-AEC=A解析:相等见解析【分析】根据全等三角形的对应角相等进一步减去同一个角后即可
23、证得结论【详解】解:相等;理由:ABEDCE,AEB=DEC,DEC-AEC=AEB-AEC,即:AED=BEC【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大23(1)270(2)220(3)(4),理由见解析【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1解析:(1)270(2)220(3)(4),理由见解析【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;(4)根据折叠对应角
24、相等,得到,进而求出,最后利用即可求解(1)解:如下图所示:在AEF中,由外角性质可知:1=A+EFA=90+EFA,2=A+AEF=90+AEF,1+2=(90+EFA)+( 90+AEF)=180+EFA+AEF,ABC为直角三角形,A=90,EFA+AEF=180-A=90,1+2=180+90=270(2)解:如下图所示:在AEF中,由外角性质可知:1=A+EFA,2=A+AEF,1+2=(A+EFA)+( A+AEF)=(A +EFA+AEF)+A=180+40=220(3)解:由(1)、(2)中思路,由三角形外角性质可知:1=A+EFA,2=A+AEF,1+2=(A+EFA)+(
25、A+AEF)=(A +EFA+AEF)+A=180+A,与的关系是:1+2=180+A(4)解:与的关系为:,理由如下:如图,是由折叠得到的,又,与的关系【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180”这一隐含的条件24(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米(2)最多建22个类摊位【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位解析:(1)每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方
26、米(2)最多建22个类摊位【分析】(1)设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,由题意:用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的,列出分式方程,然后解方程即可;(2)设类摊位的数量为个,则类摊位的数量为个,由题意:建造类摊位的数量不少于类摊位数量的3倍,列出一元一次不等式,然后解不等式即可(1)解:设每个类摊位占地面积为平方米,则每个类摊位占地面积为平方米,依题意,得:,解得:,经检验,是原分式方程的解,且符合题意,则答:每个类摊位占地面积为5平方米,每个类摊位占地面积为3平方米(2)设类摊位的数量为个,则类摊位的数量为个,依题意,得:,解得:,因为取整数,
27、所以的最大值为22答:最多建22个类摊位【点睛】本题考查了分式方程的应用以及一元一次不等式的应用解题的关键是:(1)找准等量关系,正确列出分式方程:(2)找出数量关系,正确列出一元一次不等式25(1);(2)3;(3)11;1【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b解析:(1);(2)3;(3)11;1【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b的正方形以及2个长为b宽
28、为a的长方形的组合体,根据正方形及长方形的面积公式可得出S正方形a2+2ab+b2;由图2中的图形面积不变,可得出(a+b)2a2+2ab+b2;(2)把括号打开,根据各项的系数就可判断卡片的张数;(3)由a+b6可得出(a+b)236,将其和a2+b214代入(a+b)2a2+2ab+b2中即可求出ab的值;设x2019a,则x2018a+1,x2020a1,再根据完全平方公式求解即可【详解】解:(1)方法:图是边长为的正方形,;方法:图可看成个边长为的正方形、个边长为的正方形以及个长为宽为的长方形的组合体,故答案为:;(2),A卡片的面积为a2,B卡片的面积为b2,C卡片的面积为ab,根据
29、各项系数可得,要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片张故答案为:(3),即,又,设,则,即【点睛】本题考查了完全平方公式的几何背景、正方形的面积以及长方形的面积,解题的关键是:利用长方形、正方形的面积公式,找出结论;根据面积不变,找出(a+b)2a2+2ab+b226(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交P
30、B于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作F
31、Hx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题27(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延
32、长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+D
33、CB=60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题