1、人教版中学七7年级下册数学期末质量监测试卷一、选择题12的平方根是()A1.414B1.414CD2下列生活现象中,不是平移现象的是( )A人站在运行着的电梯上B推拉窗左右推动C小明在荡秋千D小明躺在直线行驶的火车上睡觉3点在平面直角坐标系中所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列说法中不正确的个数为()在同一平面内,两条直线的位置关系只有两种:相交和垂直有且只有一条直线垂直于已知直线如果两条直线都与第三条直线平行,那么这两条直线也互相平行从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离过一点,有且只有一条直线与已知直线平行A2个B3个C4个D5个5如图,已知直
2、线、被直线所截,E是直线右边任意一点(点E不在直线,上),设,下列各式:,的度数可能是( )ABCD6下列说法正确的是()A9的立方根是3B算术平方根等于它本身的数一定是1C2是4的一个平方根D的算术平方根是27如图,在中,交AC于点E,交BC于点F,连接DC,则的度数是( )A42B38C40D328如图,在平面直角坐标系中,一动点从原点O出发,按向上向右向下向右的方向依次平移,每次移动一个单位,得到,那么点的坐标为( )ABCD九、填空题9算术平方根等于本身的实数是_.十、填空题10在平面直角坐标系中,点与点关于轴对称,则的值是_十一、填空题11如图,已知AD是ABC的角平分线,CE是AB
3、C的高,BAC=60,BCE=40,则ADB=_十二、填空题12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度十三、填空题13将一张长方形纸条折成如图的形状,已知,则_十四、填空题14请阅读下列材料,现在规定一种新的运算:,例如:按照这种计算的规定,当,x的值为_十五、填空题15已知点,且点到两坐标轴的距离相等,则点的坐标是_十六、填空题16如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(2,2),第四次点A3跳动至点A4(3,2),依此规律跳动下去,则点A2021与点A2022之间的
4、距离是_十七、解答题17(1); (2),求.十八、解答题18求满足下列各式x的值(1)2x280;(2)(x1)34十九、解答题19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC二十、解答题20与在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标: ; ; ;(2)说明由经过怎样的平移得到?答:_(3)若点是内部一点,则平移后内的对应点的坐标为_;(4)求的面
5、积二十一、解答题21已知某正数的两个不同的平方根是和;的立方根为;是的整数部分求的平方根二十二、解答题22(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121m2的草坪,草坪周围用篱笆围绕现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草
6、坪的实际面积就减少了21m2,请你根据此方案求出各小路的宽度(取整数)二十三、解答题23如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间二十四、解答题24将两块三角板按如图置,其中三角板边,(1)下列结论:正确
7、的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数二十五、解答题25如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由【参考答案】一、选择题1D解析
8、:D【分析】根据平方根的定义求解即可【详解】解:2的平方根是故选:D【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根2C【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可【详解】解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发解析:C【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可【详解】解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动故选:C【点睛】本题考查了
9、图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小3B【分析】根据坐标的特点即可求解【详解】点在平面直角坐标系中所在的象限是第二象限故选B【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点4C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可【详解】在同一平面内,两条直线的位置关系只有两种:相交和平行,故不正确;过直线外一点有且只有一条直线垂直于已知直线故不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行故正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的
10、距离故不正确;过直线外一点,有且只有一条直线与已知直线平行故不正确;不正确的有四个故选:C【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解5A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可【详解】解:(1)如图,由ABCD,可得AOC=DCE1=,AOC=BAE1+AE1C,AE1C=-(2)如图,过E2作AB平行线,则由ABCD,可得1=BAE2=,2=DCE2=,AE2C=+(3)当点E在CD的下方时,同理可得,AEC=-综上所述,AEC的度数可能为-,+,-即+,-,-,都成立故
11、选A【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:9的立方根是,故A项错误;算术平方根等于它本身的数是1和0,故B项错误;2是4的一个平方根,故C项正确;的算术平方根是,故D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7D【分析】由可得到与的关系,利用三角形的外角与内角的关系可得结论【详解】解:,故选:【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关
12、键8D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,的坐标是;故答案选D【点睛】本题主要考查了点的坐标规律题,准确计算解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,的坐标是;故答案选D【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键九、填空题90或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术
13、平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身十、填空题104【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的
14、点的坐标特征是解此类问题的关键.十一、填空题11100【分析】根据AD是ABC的角平分线,CE是ABC的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADB解析:100【分析】根据AD是ABC的角平分线,CE是ABC的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADBBCE+ACE+CAD,从而求得ADB的度数【详解】解:AD是ABC的角平分线,BAC60BADCADBAC30, CE是ABC的高,CEA90CEA+BAC+ACE180ACE30ADBBCE+ACE+CAD,BCE
15、40ADB40+30+30100故答案为:100【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案十二、填空题12100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的
16、关键是作辅助线,构造平行线两直线平行,内错角相等十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点
17、睛】此题考查了解一元一次方程,解题的关键是掌握其步骤解析:【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解十五、填空题15或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐标为:或;故答案为:或解析:或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A
18、为,或,解得:或,点A的坐标为:或;故答案为:或;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点十六、填空题162023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022
19、的坐标,进而可求出点A2021与点A2022之间的距离【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011)点A2021与点A2022的纵坐标相等,点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是
20、解题的关键十七、解答题17(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式 ;(2)x2-4=5x2=9x=3或x=-3解析:(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式 ;(2)x2-4=5x2=9x=3或x=-3十八、解答题18(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x280,解得或者;(2)(x1)34,解得【解析:(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的
21、立方根解方程【详解】(1)2x280,解得或者;(2)(x1)34,解得【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键十九、解答题19(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明
22、:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)
23、根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A的变化写出平移方法即可;(3)根据平移规律逆向写出点P的坐标;(4)利用ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解【详解】解:(1)A(-3,1);B(-2,-2);C(-1,-1);(2)向左平移4个单位,向下平移2个单位; (3)若点P(a,b)是ABC内部一点,则平移后ABC内的对应点P的坐标为:(a-4
24、,b-2);(4)ABC的面积=2【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键二十一、解答题21【分析】由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.【详解】解:某正数的两个平方根分别是和, 又的立方根为,又是的整数部分,;当,时,解析:【分析】由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.【详解】解:某正数的两个平方根分别是和, 又的立方根为,又是的整数部分,;当,时,的平方根是【点睛】本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键.二十
25、二、解答题22(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解【详解】解:(1)正方体有6个面且每个面都相等,正方体的一个面的面积=2 dm2正方形的棱长=dm;故答案为: dm ;(2)甲方案:
26、设正方形的边长为xm,则x2 =121x =11正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2=121r =11圆的周长为:2= 22m 442222(2- 4 2 正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 y)2=12121 11 y =10 y= 取整数 y =答:根据此方案求出小路的宽度为;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、解答题23(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或3
27、0s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当B
28、CEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,
29、RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCD
30、E时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键二十
31、四、解答题24(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到EAB角度所有可能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=105-30=75,BADB,BC和AD不平行,故错误;BAC+
32、DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=60,EAB=180-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEBC,则C=CAE=45,EAB=45+90=135;综上:E
33、AB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题二十五、解答题25(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再解析:(1)详见解析;(2)BAE+MCD=90,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分ACD,AE平分BAC得出BAC=2EAC,ACD=2ACE,再由EAC+ACE=90可知BAC+ACD=180,故可得
34、出结论;(2)过E作EFAB,根据平行线的性质可知EFABCD,BAE=AEF,FEC=DCE,故BAE+ECD=90,再由MCE=ECD即可得出结论;(3)根据ABCD可知BAC+ACD=180,QPC+PQC+PCQ=180,故BAC=PQC+QPC试题解析:证明:(1)CE平分ACD,AE平分BAC,BAC=2EAC,ACD=2ACEEAC+ACE=90,BAC+ACD=180,ABCD; (2)BAE+MCD=90证明如下:过E作EFABABCD,EFABCD,BAE=AEF,FEC=DCEE=90,BAE+ECD=90MCE=ECD,BAE+MCD=90; (3)BAC=PQC+QPC理由如下:如图3:ABCD,BAC+ACD=180QPC+PQC+PCQ=180,BAC=PQC+QPC; PQC+QPC+BAC=180理由如下:如图4:ABCD,BAC=ACQPQC+PCQ+ACQ=180,PQC+QPC+BAC=180点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键