资源描述
人教版中学七7年级下册数学期末质量监测试卷附答案
一、选择题
1.如图,直线a,b被直线c所截,∠1的同旁内角是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点P(﹣5,4)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( )
A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤
6.若,,则( )
A.632.9 B.293.8 C.2938 D.6329
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )
A.(21,﹣1) B.(21,0) C.(21,1) D.(22,0)
九、填空题
9.如果和互为相反数,那么________.
十、填空题
10.点A(2,4)关于x轴对称的点的坐标是_____.
十一、填空题
11.如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则__________.
十二、填空题
12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.
十三、填空题
13.如图,在△ABC中,∠ACB=90°,∠A<∠B,点D为AB边上一点且不与A、B重合,将△ACD沿CD翻折得到△ECD,直线CE与直线AB相交于点F.若∠A=α,当△DEF为等腰三角形时,∠ACD=__________________.(用α的代数式表示∠ACD)
十四、填空题
14.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____.
十五、填空题
15.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.
十六、填空题
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.
十七、解答题
17.计算:
(1);
(2).
十八、解答题
18.求下列各式中的:
(1);
(2);
(3).
十九、解答题
19.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补.
请将小华的想法补充完整:
∵和交于点.
∴;( )
而是的中点,那么,又已知,
∴( ),
∴,(全等三角形对应边相等)
∴,( )
∴,( )
∴和互补.( )
二十、解答题
20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.
(1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1.
(2)求△ A1B1C1的面积.
二十一、解答题
21.请回答下列问题:
(1)介于连续的两个整数和之间,且,那么 , ;
(2)是的小数部分,是的整数部分,求 , ;
(3)求的平方根.
二十二、解答题
22.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二十三、解答题
23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
二十四、解答题
24.已知,将一副三角板中的两块直角三角板如图1放置,,,,.
(1)若三角板如图1摆放时,则______,______.
(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;
(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数.
二十五、解答题
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.
【详解】
解: 直线a,b被直线c所截,∠1的同旁内角是∠2,
故选:A.
【点睛】
本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.
2.B
【分析】
根据平移变换的性质,逐一判断选项,即可得到答案.
【详解】
A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
B. 可以经过平移变换得到,故本选项符合题意;
C
解析:B
【分析】
根据平移变换的性质,逐一判断选项,即可得到答案.
【详解】
A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
B. 可以经过平移变换得到,故本选项符合题意;
C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
故选B.
【点睛】
本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.
3.B
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(﹣5,4)位于第二象限.
故选:B.
【点睛】
本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.C
【分析】
根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.
【详解】
解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=﹣.
(2)如图2,过E2作AB平行线,则由AB∥CD,
可得∠1=∠BAE2=,∠2=∠DCE2=,
∴∠AE2C=+.
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=﹣.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°﹣﹣.
综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣.
故选:C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
6.B
【分析】
把,再利用立方根的性质化简即可得到答案.
【详解】
解: ,
故选:
【点睛】
本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.
7.D
【分析】
由题意易得,则有,然后根据平行线的性质可求解.
【详解】
解:∵,,
∴,
∵平分,
∴,
∴,
∵,
∴;
故选D.
【点睛】
本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.
8.C
【分析】
计算点P走一个半圆的时间,确定第21秒点P的位置.
【详解】
点P运动一个半圆用时为秒,
∵21=10×2+1,
∴21秒时,P在第11个的半圆的最高点,
∴点P坐标为(21,1),
解析:C
【分析】
计算点P走一个半圆的时间,确定第21秒点P的位置.
【详解】
点P运动一个半圆用时为秒,
∵21=10×2+1,
∴21秒时,P在第11个的半圆的最高点,
∴点P坐标为(21,1),
故选:C.
【点睛】
本题考查了点的坐标规律,关键是计算出点P走一个半圆的时间.
九、填空题
9.-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy
解析:-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy=-1×2=-2
故答案为:-2.
【点睛】
本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0.
十、填空题
10.(2,﹣4)
【分析】
根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A(2,4)关于x轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛
解析:(2,﹣4)
【分析】
根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A(2,4)关于x轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛】
此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.
十一、填空题
11.【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同
解析:
【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同理可得,
,
∴,
∵,
∴,
故答案为:.
【点睛】
本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.
十二、填空题
12.40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
解析:40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
【点睛】
本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.
十三、填空题
13.或或
【分析】
若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.
【详解】
解:由翻折的性质可知,,
如图1,
当时,则,
,,
,
,
当时,为等腰三角形,
故答案
解析:或或
【分析】
若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.
【详解】
解:由翻折的性质可知,,
如图1,
当时,则,
,,
,
,
当时,为等腰三角形,
故答案为.
当时,;
,
,
,;
,
,
如图2,
当时,;
,,
;
当或或时,为等腰三角形,
故答案为:或或.
【点睛】
本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理.
十四、填空题
14.3; .
【分析】
由可求出,由,可分别求出,,继而可计算出结果.
【详解】
解:(1)由题意可知:,
则,
(2)由题意可知:
,,
则,,
∴,
故答案为:3;.
【点睛】
本题主
解析:3; .
【分析】
由可求出,由,可分别求出,,继而可计算出结果.
【详解】
解:(1)由题意可知:,
则,
(2)由题意可知:
,,
则,,
∴,
故答案为:3;.
【点睛】
本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.
十五、填空题
15.(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P
解析:(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P的坐标为(2,0),
故答案为(2,0).
十六、填空题
16.【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,
解析:
【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,,
∵2021=505×4+1
∴的横坐标为2×505=1010,纵坐标为1
即
故答案为:
【点睛】
本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.
十七、解答题
17.(1)0.5;(2)4
【分析】
(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;
(2)根据实数的混合运算法则进行求解.
【详解】
解:(1);
(2).
【点睛】
本题考查实数
解析:(1)0.5;(2)4
【分析】
(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;
(2)根据实数的混合运算法则进行求解.
【详解】
解:(1);
(2).
【点睛】
本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.
十八、解答题
18.(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1
解析:(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1)∵,
∴,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴或,
解得:或.
【点睛】
本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.
十九、解答题
19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.
【详解】
解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.
【详解】
解:∵CF和BE相交于点O,
∴∠COB=∠EOF;(对顶角相等),
而O是CF的中点,那么CO=FO,又已知EO=BO,
∴△COB≌△FOE(SAS),
∴BC=EF,(全等三角形对应边相等),
∴∠BCO=∠F,(全等三角形的对应角相等),
∴AB∥DF,(内错角相等,两直线平行),
∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补),
故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.
二十、解答题
20.(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求
解析:(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求;
(2)如图所示,△A1B1C1的面积==.
【点睛】
本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
二十一、解答题
21.(1)4;b=(2)−4;3(3)±8
【分析】
((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值;
(2)根据(1)的结论即可确定x与y的值;
(3)把(2)的结论代入计算即
解析:(1)4;b=(2)−4;3(3)±8
【分析】
((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值;
(2)根据(1)的结论即可确定x与y的值;
(3)把(2)的结论代入计算即可.
【详解】
解:(1)∵16<17<25,
∴4<<5,
∴a=4,b=5,
故答案为:4;5;
(2)∵4<<5,
∴6<+2<7,
由此整数部分为6,小数部分为−4,
∴x=−4,
∵4<<5,
∴3<-1<4,
∴y=3;
故答案为:−4;3
(3)当x=−4,y=3时,
==64,
∴64的平方根为±8.
【点睛】
此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.
二十二、解答题
22.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二十三、解答题
23.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
二十四、解答题
24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当B
解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.
【详解】
解:(1)作EI∥PQ,如图,
∵PQ∥MN,
则PQ∥EI∥MN,
∴∠α=∠DEI,∠IEA=∠BAC,
∴∠DEA=∠α+∠BAC,
∴α= DEA -∠BAC=60°-45°=15°,
∵E、C、A三点共线,
∴∠β=180°-∠DFE=180°-30°=150°;
故答案为:15°;150°;
(2)∵PQ∥MN,
∴∠GEF=∠CAB=45°,
∴∠FGQ=45°+30°=75°,
∵GH,FH分别平分∠FGQ和∠GFA,
∴∠FGH=37.5°,∠GFH=75°,
∴∠FHG=180°-37.5°-75°=67.5°;
(3)当BC∥DE时,如图1,
∵∠D=∠C=90,
∴AC∥DF,
∴∠CAE=∠DFE=30°,
∴∠BAM+∠BAC=∠MAE+∠CAE,
∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;
当BC∥EF时,如图2,
此时∠BAE=∠ABC=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°;
当BC∥DF时,如图3,
此时,AC∥DE,∠CAN=∠DEG=15°,
∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.
综上所述,∠BAM的度数为30°或90°或120°.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十五、解答题
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文