收藏 分销(赏)

初二上学期压轴题模拟数学综合试卷带答案[001].doc

上传人:精*** 文档编号:1789906 上传时间:2024-05-09 格式:DOC 页数:18 大小:636.04KB
下载 相关 举报
初二上学期压轴题模拟数学综合试卷带答案[001].doc_第1页
第1页 / 共18页
初二上学期压轴题模拟数学综合试卷带答案[001].doc_第2页
第2页 / 共18页
初二上学期压轴题模拟数学综合试卷带答案[001].doc_第3页
第3页 / 共18页
初二上学期压轴题模拟数学综合试卷带答案[001].doc_第4页
第4页 / 共18页
初二上学期压轴题模拟数学综合试卷带答案[001].doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、初二上学期压轴题模拟数学综合试卷带答案1如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:2如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足(1)直接写出_,_;(2)连接AB,P为内一点,如图1,过点作,且,连接并延长,交于求证:;如图2,在的延长线上取点,连接若,点P(2n,n),试求点的坐标3如图,ACB和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数(2)如图2,若ACBDCE90,CF为DC

2、E中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论4已知:,(1)当a,b满足时,连接AB,如图1 求:的值点M为线段AB上的一点(点M不与A,B重合,其中BMAM),以点M为直角顶点,OM为腰作等腰直角MON,连接BN,求证:(2)当,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论5在中,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接当点在线段上时,若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线

3、上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)6如图,在ABC中,点D为直线BC上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD7若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点例如,若整式,则a0,b2,c-5,d4,故A

4、的关联点为(-5,-11)(1)若,试求出A的关联点坐标;(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式(3)若整式Dx-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式8在ABC中,ACB90,过点C作直线lAB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿AC路径运动,终点为C点F从D点出发,以每秒2cm的速度沿DCBCD路径运动,终点为D点E、F同时开始运动,第

5、一个点到达终点时第二个点也停止运动(1)当ACBC时,试证明A、C、D三点共线;(温馨提示:证明ACD是平角)(2)若AC10cm,BC7cm,设运动时间为t秒,当点F沿DC方向时,求满足CE2CF时t的值;(3)若AC10cm,BC7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使CEMCFN成立的t的值【参考答案】2(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即

6、可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点

7、C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE

8、,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键3(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明解析:(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的

9、乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明OPBOCA,再证明BNP为等腰直角三角形,利用AAS证明ACDBND,即可证明AD=DB;作出如图所示的辅助线,证明BMP为等腰直角三角形,利用AAS证明PBFMPE,求得E(2n,n) ,M(3n3,n),证明点M,E关于y轴对称,得到3n3+2n=0,即可求解【详解】(1),解得:,故答案为:3,;(2)连接AC,COP=AOB=90,COP-AOP =AOB-AOP,在OPB和OCA中,OPBOCA(SAS),AC=BP,OCA=OPB=90,过点B作BNBP,交CP的延长线于点

10、N,COP=90,OP=OC,OCP=OPC=ACP=45,OPB=90,BPN=45,BNP为等腰直角三角形,BPN=N=45,BN=BP=AC,在ACD和BND中,ACDBND(AAS),AD=DB;AOB=90,AO=OB,AOB为等腰直角三角形,OBA=45,MBO=ABP,MBO+OBP=ABP+OBP=OBA=45,MBP=45,OPBP,BMP为等腰直角三角形,MP=BP,过点P作y轴的平行线EF,分别过M,B作MEEF于E,BFEF于F,EF交x轴于G,ME交y轴于H,连接OE,MPE+EMP=MPE +FPB=90,EMP=FPB,在PBF和MPE中,PBFMPE(AAS),

11、BF=EP,PF=ME,P(2n,n),BF=EP=EH=2n,PG=EG=n,PF=ME=3n,MH=ME-EH=3n2n=33n,E(2n,n) ,M(3n3,n),点P,E关于x轴对称,OE=OP,OEP=OPE,同理OM=OE,点M,E关于y轴对称,3n3+2n=0,解得,即点M的坐标为(,)【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题4(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均

12、为等腰三角形可得出“AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解】(1)证明:CABCBACDECED50,ACBDCE1802

13、5080,ACBACD+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBECCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是

14、本题的解题关键5(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明解析:(1)10;证明见解析;(2),理由见解析;【分析】(1)利用可求出,即可求出;作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;(2)证明,得到,再利用等量代换证明;(1)解:由图可知,即,;作交AB与点C,交AB与点F,如图,在和中,即,即,(2)解:,理由如下:假设DE交BC于点G,有已知可知:,且,在和中,【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中

15、的图形,(1)的关键是证明,(2)的关键证明6(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作

16、出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由易证AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=BG,故【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键7(1)CEBD;CE=BD;结论

17、仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出

18、结论(1)BAD=90DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB=B=45,ECB=45+45=90,即 CEBD故答案为:CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直

19、角三角形,GAD+DAC=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=90,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解8(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(2)根据题意得出中的次数为次,设,计算出,进而表达出,的值,再根据的关解析:(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(

20、2)根据题意得出中的次数为次,设,计算出,进而表达出,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;(3)设,根据题意求出,进而表达出,的值,再根据的关联点为,列出关于,的等式,解出、的值即可(1)解:(1),的关联点坐标为:,故笞案为:;(2)整式是只含有字母的整式,整式是与的乘积,是二次多项式,且的次数不能超过次,中的次数为次,设 ,整式的关联点为,解得:,;(3)根据题意:设, ,整式 的关联点为,把代入得: ,解得: , 或,或【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键9(1)见解析(2)(3)【分析】(1)先由AC=BC、ACB=90得到ABC=4

21、5,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=18解析:(1)见解析(2)(3)【分析】(1)先由AC=BC、ACB=90得到ABC=45,进而得到CBD=CDB=45,然后得到BCD=90,最后得到ACB+BCD=180,即A、C、D三点共线;(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;(3)先由BCP=FCN、BCP+ECM=90,ECM+MEC=90得到MEC=FCN,然后结合全等三角形的性质列出方程求得t的值(1)证明:AC=BC,ACB=90,ABC=45,点B与点D关于直线l对称,BD直线l,BC=CD,直线l

22、AB,BDAB,ABD=90,CBD=CDB=45,BCD=90,ACB+BCD=180,A、C、D三点共线;(2)解:AC=10cm,BC=7cm,当点F沿DC方向时,0t3.5,CE=10-t,CF=7-2t,CE=2CF,10-t=2(7-2t),解得:t=(3)解:BCP=FCN,BCP+ECM=90,ECM+MEC=90,MEC=FCN,CEMCFN,当CE=CF时,CEMCFN,当点F沿DC路径运动时,10-t=7-2t,解得,t=-3,不合题意,当点F沿CB路径运动时,10-t=2t-7,解得,t=,当点F沿BC路径运动时,10-t=7-(2t-72),解得,t=11,第一个点到达终点时第二个点也停止运动点E从A点出发,以每秒1cm的速度沿AC路径运动,终点为CAC=10,0t10,t=11时,已停止运动综上所述,当t=秒时,CEMCFN【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服