资源描述
人教版六年级上册数学应用题附答案
1.三名长跑运动员进行赛前训练。小刚跑了4km,小刚跑的等于小震跑的,小涛跑的是小震的。小涛跑了多少千米?
2.甲乙两地相距100千米,一辆汽车行了全程的,行了多少千米?
3.某修路队修一条长320米的公路,其中第一天修了,第二天修的比第一天的还多50米,两天一共修了多少米?
4.修一条路全长200米,第一天修了全长的,第二天比第一天修的还多米,第二天修了多少米?
5.一共有600棵树。如果我们一队单独种,需要10天。如果我们二队单独种,需要8天。现在两队合种,5天能种完吗?
6.一本故事书有360页,已经看了全书的。
7.某公园的门票是每张12元,30人及以上可以购买团体票,团体票八折优惠。某班组织28名学生去这个公园,用300元钱购买门票,你认为钱够吗?为什么?
8.学校组织同学们参加兴趣小组活动,参加绘画组的共90人,参加文艺组的同学是绘画组的,参加书法组的同学是绘画组的,参加书法组的有多少人?
9.果园里有杏树360棵,苹果树的棵数比杏树多。苹果树有多少棵?
10.一本200页的书,慧慧第一天看了,第二天看了,慧慧这两天一共看了多少页?
11.张老师到超市买了一套衣服,其中裤子12元,________________________,上衣多少钱?(根据线段图,将题中的信息补充完整,并列式解答。)
12.学校体育室有120个排球,足球的个数是排球的,篮球的个数是足球的,篮球有多少个?(先画图表示出三种球数量之间的关系,再列式解答)
13.一本故事书共240页,晓晓第一周看了全书的,第二周看了剩下的还多10页,这时还剩多少页没看?
14.植树队准备种1200棵树,第一天种了总数的,第二天种的棵数是第一天的,第二天种了多少棵树?
15.人的血液约占体重的,血液里大约是水。王叔叔的体重是78千克,他的血液里大约含水多少千克?
16.三个同学踢毽子,小明踢了96个,小强踢的数量是小明的,小亮踢的数量是小强的,小亮踢了多少个?
17.鸽子的孵化期是多少天?
18.一个旅游景点去年全年接待游客约196万人,上半年接待游客数是全年的,第三季度接待游客数是上半年的,第三季度接待游客多少万人?
19.一本童话书有160页,胡兵第一周读了这本书的,第二周读了余下的,第二周读了多少页?
20.珠海市长隆海洋王国2019年上半年接待游客为560万人,下半年游客量是上半年的。2019年长隆海洋王国下半年接待游客多少万人?
21.兄弟两人要从公园门口沿马路向东去博物馆,而他们回家则要从公园门口沿马路向西行.他们商量是先回家取车,再骑到博物馆;还是直接从公园门口走到博物馆.哥哥算了一下:如果从公园到博物馆的距离超过1千米,则回家取车比较省时间;如果公园和博物馆的距离不足1千米,则直接走过去省时间.若骑车与步行的速度比是4:1,那么公园门口到他们家的距离是多少千米?
22.甲、乙两站相距不到500千米,A、B两列火车从甲、乙两站相对开出,A车行至210千米处停车,B车行至270千米处停车,这时两车相距的正好是甲、乙两站距离的,甲、乙两站的距离是多少?
23.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
24.一项工程,甲队独做10天完成,乙队独做15天完成,甲队先做2天后,剩下的有两队合做,还要多少天可以完成任务?
25.加工一批零件,由一个人单独做,甲要4小时,乙要5小时,丙要6小时,先由乙做2小时,剩下的由甲、丙两人合作,还要几分钟才能完成?
26.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
27.依依从家去外婆家,第一个小时走了全程的,第二个小时走了剩下路程的,已知第一个小时比第二个小时多走了1050米,依依家与外婆家相距多少千米?
28.一辆汽车从甲地开往乙地,行了全程的,这时离中点站还有45千米。甲乙两地相距多少千米?
29.当你开车开到路程时,你油箱的油已由原来的满箱到只有箱。问:是否能用这些油到达终点?请你尝试说说理由。
30.育英小学六年级的原有学生中,男生占。后来又转来12名男生,这时男生人数占六年级总数的。六年级原有学生多少人?
31.客、货两车分别从甲、乙两地同时相向而行,相遇时客车与货车所行路程比是7∶4。已知,客车从甲地行驶到乙地需要8小时,货车每小时48km。甲、乙两地相距多少千米?
32.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3,第二周加工了总任务的,已知两周一共加工了140个零件。王叔叔接到的任务是一共要加工多少个零件?
33.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙单独做。如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?
34.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是,那么快车比慢车总共多行驶了多少千米?
35.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
36.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有40千米。已知货车和客车的速度比是5∶7,甲、乙两地相距多少千米?
37.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李丽多做了.他们两人各做了多少道题?
38.甲、乙两个仓库共同储存一批粮食,甲仓库储存的粮食比这批粮食的多10t,乙仓库储存的粮食比这批粮食的少2t,这批粮食一共有多少吨?
39.仙居目前的居民用电电价是0.55元/千瓦时。为了倡导建设“节约型社会”,鼓励市民安装分时电表实行峰谷时谷电价,具体收费标准如下:
时段
峰时(8:00~22:00)
谷时(22:00~次日8:00)
每千瓦时电价(元)
0.63
0.43
孔强家一年用电4800千瓦时,其中峰时用电量与谷时用电量的比是,如果孔强家安装分时电表,一年能节约多少钱?
40.
如果成套买,可以买几套运动服?
41.五年级学生举行“最爱吃的水果”投票活动(每人均有投票,且只能投1种水果),结果如图。
(1)如果从五年级学生中随意抽取一人,这人最爱吃的水果是( )的可能性最大;
(2)如果五年级学生中最爱吃香蕉和葡萄的同学共有78人,那么五年级一共有学生多少人?
42.下面是某校六年级学生去年体育达标情况如图:
(1)完成下面的统计表。
项目
优秀
良好
达标
未达标
人数
60
(2)良好的人数比优秀的人数多百分之几?
43.张阿姨得到一笔20000元的奖金。她打算拿出这笔奖金的20%还房贷,拿出6000元作家庭备用金,剩余的全部存入银行,作为女儿三年后上大学的学费。
(1)张阿姨用于还房贷的钱是多少元?
(2)请把下边的扇形统计图补充完整。
(3)张阿姨存入银行的钱,存期三年,年利率2.75%,到期时,张阿姨一共可以取回多少钱?
44.下图是李大叔种植各种蔬菜面积的扇形统计图。
(1)填写扇形统计图中的百分比。
(2)已知茄子的种植面积是175m2,青椒的种植面积是( )m2。
(3)在扇形统计图中,表示茄子的圆心角是( )。
45.李元对自己家的5月份消费支出做了统计,并绘制出条形和扇形统计图。
支出项目
伙食水电
购买衣物
文化教育
其他
合计
金额(元)
2250
900
1350
500
5000
①据相关信息把条形统计图补充完整;
②扇形统计图中甲表示的消费项目是___________,占5月份消费支出的___________%。
③根据图表中的信息,提出一个可以用两步计算来解决的问题,并解答。
46.下面两幅图都是某地首批健康码情况,但都有部分不完整。(健康码分为绿码黄码红码三种)
(1)已申请健康码人数占总人数的90%,该地一共有多少万人?
(2)黄码人数比绿码人数的多2万人,绿码人数有多少万人?
47.如图,把3根横截面直径都是20厘米的圆木用铁丝紧紧地捆在一起,捆一圈(接头不计)。至少需要铁丝多少厘米?
48.一块正方形的草地,边长4米,一对角线的两个顶点各有一颗树,树上各栓着一只羊,栓羊的绳子长都是4米,两只羊都能吃到草的草地的面积是多少平方米?
49.如图是圆的面积公式推导图,若剪拼成的近似平行四边形的底是12.56厘米,则这个圆的周长和面积分别是多少?
50.如图,一个门洞(图中阴影部分),由一个半圆形和一个长方形组成,它的顶部和左右两边贴有装饰花边(图中空白部分)。
(1)装饰花边一共长多少米?(花边的宽度忽略不计)
(2)这个门洞的面积是多少平方米?
51.修路队修一条公路,第一天修了全长的40%,第二天修了全长的,第二天比第一天多修了30千米,这条公路全长多少千米?
52.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?
53.按照下图方式摆放餐桌和椅子。
照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解)
54.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。问:第二层楼表示哪个三位数?
55.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是( )。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
56.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
57.在数学学习中,我们常常用“数形结合”的方法将复杂的问题简单化,抽象问题具体化。
(1)我们在探究分数乘法的算理和算法时就运用了这一思想方法,请画图解释的算理。
(2)玲玲在解决“12+12+22+32+52+82+132+212+342+…”这个问题时,想到了用数形结合的办法来探索,于是她以这组数中各个数作为正方形的边长构造正方形,再拼成如下面所示的长方形来研究。
序号
1
2
3
4
……
图形
……
算式
12+12
12+12+22
12+12+22+32
……
①你根据前面的规律,把序号4的图形与算式补充完整。
②观察上面的图形和算式,你能把下面的算式补充完整吗?
12+12=1×2
12+12+22=2×3
12+12+22+32=3×5
12+12+22+32+52=( )×( )
12+12+22+32+52+82+132=( )×( )
③若按此规律继续拼长方形,有一个长方形的面积是1870,它表示的算式是( )。
58.通过计算并观察①②③小题,猜想出④的结果,写出你的发现,并用图形进行说明。
①
②+
③…
则:④
发现:____________________________________________________
说明:
59.摆一摆,找规律.
摆第n个图形需要用多少根火柴棒?
60.学校买来250本图书,一至四年级分去总数的40%,其余的按3∶2分给五、六年级,六年级分得多少本?
61.某影剧院能容纳600名观众,该剧院有2个大门和4个小门。经测试,1个大门每分钟能安全通过120人,1个小门每分钟能安全通过80人。在紧急情况下,由于拥挤,大、小门通过的人数各下降30%。
(1)在正常情况下,开启所有的门,每分钟能安全通过多少人?
(2)在紧急情况下,如果要在3分钟内安全疏散全部观众,影剧院门的设计符合要求吗?
62.刘师傅加工一批零件,前3天正好加工了这批零件的60%,第四天又加工了150个,这时已经加工的数量与未加工数量的比是4∶1,这批零件还剩下多少个没有加工?
63.修路队修一段路,第一天修了这段路全长的45%,第二天修了这段路全长的。
(1)两天共修了510米,这段路全长多少米?
(2)第一天比第二天多修30米,这段路全长多少米?
64.夏天天气炎热,人们都喜欢买西瓜来消暑解渴。“果色天香”水果店运进一批西瓜,第一天卖出的西瓜与剩下的西瓜的比是,如果再卖出360千克,就还剩下这批西瓜的。水果店运进的这批西瓜有多少千克?
65.一种优良花生仁的出油率约是42%,现在有1000千克的花生仁,能榨出花生油多少千克?
66.一台笔记本电脑原价7800元,在商场“店庆促销”活动中,这台电脑降价,降价后这台电脑的售价是多少元。
67.一堆煤,第一周烧了总数的,第二周烧了总数的25%,已知第二周比第一周多烧煤4.5吨,这堆煤共有多少吨?
68.小明看一本故事书,已经看了30%,剩下的比已看的多48页,这本故事书共有多少页?请先在下面的线段图上把信息和问题补充完整,再列式解答。
69.某工厂有三个车间,已知第一车间有30人,并且人数最多,以下三个关于车间人数的信息只有一个是准确的。
A.第一车间的人数占三个车间总人数的。
B.第一车间的人数比三个车间总人数的少2。
C.第一车间、第二车间、第三车间人数的比是。
(1)以上三个信息中准确的信息是( )(填序号)。
(2)根据这个信息算一算,这个工厂三个车间共有多少人?
70.聪聪和明明在研究两个平方数的差时发现了规律:
(1)请你根据聪聪和明明发现的规律把下面的算式填写完整。
(__________+__________)×(___________-_________)
(2)求下图中阴影部分的面积。聪聪说可以用“a2-b2”来计算,明明说也可以用“(a+b)×(a-b)”来计算。你知道明明是怎么想的吗?
(3)运用上面发现的规律计算下图中扇环的面积。(单位:厘米)
【参考答案】
1.3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点
解析:3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,
解析:80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
3.200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
解析:200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
=30+50
=80(米)
120+80=200(米)
答:两天一共修了200米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
4.米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=
解析:米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=(米)
答:第二天修了米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
5.能
【解析】
首先根据工作效率=工作量÷工作时间,分别用1除以两队独立完成的时间,求出他们的工作效率;然后再求出他们的工作效率之和,乘以5,和1比较大小即可。
(+)×5
=×5
=
因为>1
答:
解析:能
【解析】
首先根据工作效率=工作量÷工作时间,分别用1除以两队独立完成的时间,求出他们的工作效率;然后再求出他们的工作效率之和,乘以5,和1比较大小即可。
(+)×5
=×5
=
因为>1
答:5天能种完。
【点睛】
此题主要考查了工程问题的应用,解答此题要注意把握住基本关系,即:工作量=工作效率×工作时间,工作效率=工作量÷工作时间,工作时间=工作量÷工作效率。
6.144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没
解析:144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没有看。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
7.够,因为只需要288元
【解析】
此题属于折扣问题,28名学生虽然不能购团体票八折优惠,但是多买2张即可八折购票。若不打折,28名学生购票款数为:元,300元钱不够。若多买2张享受八折,则购票款数为
解析:够,因为只需要288元
【解析】
此题属于折扣问题,28名学生虽然不能购团体票八折优惠,但是多买2张即可八折购票。若不打折,28名学生购票款数为:元,300元钱不够。若多买2张享受八折,则购票款数为:元。所以300元钱够了。
(12×)×30
=12××30
=288(元)
答:用300元买门票够,因为只需288元。
【点睛】
此题的知识点在于:理解“打折”的意义,灵活购票。
8.36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数
解析:36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数乘分数的意义及应用。
9.504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数
解析:504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数多几分之几的数是多少,用分数乘法计算。
10.90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:
解析:90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:慧慧这两天一共看了90页。
【点睛】
此题的解题关键是掌握求一个数的几分之几是多少的计算方法。
11.上衣价格比裤子贵;15元
【解析】
看图,上衣价格比裤子贵,据此利用乘法求出上衣多少钱即可。
张老师到超市买了一套衣服,其中裤子12元,上衣价格比裤子贵,上衣多少钱?
12×(1+)
=12×
=1
解析:上衣价格比裤子贵;15元
【解析】
看图,上衣价格比裤子贵,据此利用乘法求出上衣多少钱即可。
张老师到超市买了一套衣服,其中裤子12元,上衣价格比裤子贵,上衣多少钱?
12×(1+)
=12×
=15(元)
答:上衣15元。
【点睛】
本题考查了分数乘法,求比一个数多几分之几的数是多少,用乘法。
12.画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根
解析:画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根据分析画图如下:
120××
=60×
=40(个)
答:篮球有40个。
【点睛】
此题考查的是分数应用题,解题时注意单位“1”。
13.140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下
解析:140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下页数。
240×=40(页)
240×(1-)×+10
=240××+10
=50+10
=60(页)
240-40-60=140(页)
答:这时还剩140页没看。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
14.600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,
解析:600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
15.4千克
【解析】
先把体重78千克看成单位“1”,用78千克乘上就是他的血液的质量,再把他的血液的质量看成单位“1”,再用血液的质量乘上就是血液中水的质量。即78××解答即可。解答此题的关键是分清两
解析:4千克
【解析】
先把体重78千克看成单位“1”,用78千克乘上就是他的血液的质量,再把他的血液的质量看成单位“1”,再用血液的质量乘上就是血液中水的质量。即78××解答即可。解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法求解。
78××
=52×
=4(千克)
答:他的血液里大约含水4千克。
16.40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢
解析:40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢了40个。
【点睛】
本题考查求一个数的几分之几是多少。
17.18天
【解析】
鸡的孵化期=鹅的孵化期×,鸽子的孵化期=鸡的孵化期×,据此解答。
30××
=21×
=18(天)
答:鸽子的孵化期是18天。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计
解析:18天
【解析】
鸡的孵化期=鹅的孵化期×,鸽子的孵化期=鸡的孵化期×,据此解答。
30××
=21×
=18(天)
答:鸽子的孵化期是18天。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计算。
18.63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
19
解析:63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
196××
=84×
=63(万人)
答:第三季度接待游客63万人。
【点睛】
求一个数的几分之几是多少,用乘法计算。
19.48页
【解析】
根据题意先把这本书的总页数看是单位“1”,则第一天读了全书的,就还剩下全书的(1-)用乘法可求出剩下的页数,再把剩下的页数看是单位“1”,第二天读了余下的,用乘法可求出第二天读的页
解析:48页
【解析】
根据题意先把这本书的总页数看是单位“1”,则第一天读了全书的,就还剩下全书的(1-)用乘法可求出剩下的页数,再把剩下的页数看是单位“1”,第二天读了余下的,用乘法可求出第二天读的页数,据此解答。
160×(1-)×
=160××
=48(页)
答:第二周读了48页。
【点睛】
此题考查的是分数乘法的应用,解答此题关键是依据分数乘法的意义,注意两次单位“1”的不同。
20.490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键
解析:490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键是找到单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法。
21.6千米
【解析】
解析:6千米
【解析】
22.千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+
解析:千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+270)÷(1+ )
=480
=432(千米)
不超过 500 千米,满足题意
答:甲乙两站之间的距离是432千米。
23.千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
解析:千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
24.8天
【解析】
解析:8天
【解析】
25.4分钟
【解析】
解析:4分钟
【解析】
26.50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,
解析:50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。
27.8千米
【解析】
第二个小时走了剩下路程的,也就是的 ,求出第一个小时比第二个小时多走了1050米相当于是全程的,量率对应求出依依家与外婆家的距离。
(米)
4800米=4.8千米
答:依
解析:8千米
【解析】
第二个小时走了剩下路程的,也就是的 ,求出第一个小时比第二个小时多走了1050米相当于是全程的,量率对应求出依依家与外婆家的距离。
(米)
4800米=4.8千米
答:依依家与外婆家相距4.8千米。
【点睛】
本题考查的是分数除法应用题,一个量除以其所占单位“1”的分率,求得单位“1”是多少。
28.360千米
【解析】
把全程看作单位“1”,甲地到中点站的距离为全程的,全程的处离中点站还有45千米,也就是全程的比全程的多45千米,用对应量÷对应分率=单位“1”即可求出甲乙两地的距离。
45÷(
解析:360千米
【解析】
把全程看作单位“1”,甲地到中点站的距离为全程的,全程的处离中点站还有45千米,也就是全程的比全程的多45千米,用对应量÷对应分率=单位“1”即可求出甲乙两地的距离。
45÷()
=45÷
=360(千米)
答:甲乙两地相距360千米。
【点睛】
找到对应量和对应分率是解答求单位“1”这类问题的关键。
29.不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
解析:不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
30.288人
【解析】
设六年级原有学生x人,根据原有人数×男生对应分率+转来的男生人数=现在总人数×现在男生对应分率,列出方程解答即可。
解:设六年级原有学生x人。
x+12=(x+12)×
x+12
解析:288人
【解析】
设六年级原有学生x人,根据原有人数×男生对应分率+转来的男生人数=现在总人数×现在男生对应分率,列出方程解答即可。
解:设六年级原有学生x人。
x+12=(x+12)×
x+12=x+
x-x=12-
x×60=×60
x=288
答:六年级原有学生288人。
【点睛】
用方程解决问题的关键是找到等量关系。
31.672千米
【解析】
由题意可知,在相同时间内,客车与货车所行路程比等于两车的速度比,已知货车每小时行驶48千米,那么客车每小时行驶的速度是货车速度的,根据一个数乘分数的意义,用乘法求出客车的速度,
解析:672千米
【解析】
由题意可知,在相同时间内,客车与货车所行路程比等于两车的速度比,已知货车每小时行驶48千米,那么客车每小时行驶的速度是货车速度的,根据一个数乘分数的意义,用乘法求出客车的速度,据此可解答。
48×=84(千米∕时)
84×8=672(千米)
答:甲、乙两地相距672千米。
【点睛】
本题考查路程问题和比的关系,掌握比的意义时解题的关键。
32.240个
【解析】
根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的=,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总
解析:240个
【解析】
根据条件“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”可知,第一周完成的占全部任务的=,然后用两周一共加工的零件总个数÷两周一共加工的占总个数的分率=要加工的零件总个数,据此列式解答。
第一周完成了=
140÷(+)
=140÷
=140×
=240(个)
答:王叔叔接到的任务是一共要加工240个零件。
【点睛】
题目中不易理解的一句话是“他第一周加工后,已加工零件个数和剩下零件个数的比是1∶3”,我们需要依据比与分数的关系,把它转化成一个表示第一周完成的零件个数占零件总数的分率。
33.5天
【解析】
甲的工作效率是,根据甲、乙的工作效率之比,求出乙的工作效率是,甲、乙两人各做3天后,还剩下,交给乙单独做还需要5天。
(天)
答:乙完成这件工作还需要5天。
【点睛】
工程
解析:5天
【解析】
甲的工作效率是,根据甲、乙的工作效率之比,求出乙的工作效率是,甲、乙两人各做3天后,还剩下,交给乙单独做还需要5天。
(天)
答:乙完成这件工作还需要5天。
【点睛】
工程问题,主要是利用工作效率、工作时间、工作总量的关系求解,。
34.90千米
【解析】
根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。
450÷3=150(千米)
150×=90(千米);90×
解析:90千米
【解析】
根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。
450÷3=150(千米)
150×=90(千米);90×3=270(千米)
150×=60(千米);60×3=180(千米)
270-180=90(千米)
答:快车比慢车总共多行驶了90千米。
【点睛】
本题也可以根据比例知识求解:速度比是,则相同时间内行驶的路程比也是。
35.390千米
【解析】
根据题意,相遇时客车和货车所行的路程比是,那速度比也是,设客车速度是,则货车速度是,两车相遇时共同行驶的时间是,相遇后客车、货车共同行驶的时间是,则客车行驶全程的距离等于货车相
解析:390千米
【解析】
根据题意,相遇时客车和货车所行的路程比是,那速度比也是,设客车速度是,则货车速度是,两车相遇时共同行驶的时间是,相遇后客车、货车共同行驶的时间是,则客车行驶全程的距离等于货车相遇时行驶的距离加货车相遇后行驶的距离,据此列方程解答。
由题意知,相遇时客车和货车所行的路程比是,那么速度比也是。
解:设客车速度是,则货车速度是。
答:甲、乙两地相距390千米。
【点睛】
解答本题要注意两点:①相遇时两车行驶路程比,也是速度比。②
展开阅读全文