资源描述
2024年人教版中学七7年级下册数学期末考试试卷(附答案)
一、选择题
1.的平方根是()
A.- B. C. D.
2.在下列图形中,不能通过其中一个三角形平移得到的是( )
A. B. C. D.
3.已知点P的坐标为P(3,﹣5),则点P在第( )象限.
A.一 B.二 C.三 D.四
4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( )
A.1个 B.2个 C.3个 D.4个
5.如图,直线,三角板的直角顶点在直线上,已知,则等于( ).
A.25° B.55° C.65° D.75°
6.有个数值转换器,原理如图所示,当输入为27时,输出的值是( )
A.3 B. C. D.32
7.珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同.如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于( )
A.20° B.40° C.60° D.80°
8.在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得点A1,A2,A3,…,,…,若点的坐标为,则点A2021的坐标为( )
A. B. C. D.
九、填空题
9.已知x,y为实数,且,则x-y=___________.
十、填空题
10.已知点与点关于轴对称,则的值为__________.
十一、填空题
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
十二、填空题
12.已知,,,,且,请直接写出、、的数量关系________.
十三、填空题
13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______.
十四、填空题
14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
十五、填空题
15.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___.
十六、填空题
16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.
十七、解答题
17.计算下列各题:
(1);
(2)-×;
(3)-++.
十八、解答题
18.求下列各式中的的值:
(1);
(2).
十九、解答题
19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠l=∠CGD( )
∴∠2=∠CGD
∴.CE∥BF( )
∴∠ =∠BFD( )
又∵∠B=∠C(已知)
∴ ,
∴AB∥CD( )
二十、解答题
20.如图,在平面直角坐标系中,的顶点都在格点上,点.
(1)写出点,的坐标;
(2)求的面积.
二十一、解答题
21.已知=0,求实数a、b的值并求出的整数部分和小数部分.
二十二、解答题
22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”)
(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
二十四、解答题
24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足.假定这一带长江两岸河堤是平行的,即,且
(1)求a、b的值;
(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达之前.若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
二十五、解答题
25.如图,在中,与的角平分线交于点.
(1)若,则 ;
(2)若,则 ;
(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得.
【详解】
解:因为,
所以的平方根是,
故选:C.
【点睛】
本题考查了平方根,熟练掌握平方根的定义是解题关键.
2.D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D
解析:D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.
故选:D.
【点睛】
本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.
3.D
【分析】
直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.
【详解】
解:∵点P的坐标为P(3,﹣5),
∴点P在第四象限.
故选D.
【点睛】
本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).
4.B
【分析】
根据几何初步知识对命题逐个判断即可.
【详解】
解:①对顶角相等,为真命题;
②内错角相等,只有两直线平行时,内错角才相等,此为假命题;
③平行于同一条直线的两条直线互相平行,为真命题;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;
⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;
①③命题正确.
故选:B.
【点睛】
本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.
5.C
【分析】
利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.
【详解】
解:如图
∵a//b
∴∠2=∠3,
∵∠1+∠3=180°-90°=90°
∴∠3=90°-∠1=90°-25°=65°
∴∠2=65°.
故选C.
【点睛】
本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键.
6.B
【分析】
利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值.
【详解】
根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为.
故答案选:B.
【点睛】
此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.
7.A
【分析】
过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.
【详解】
解:由题意得,AB∥DE,
过点C作CF∥AB,则CF∥DE,
∴∠BCF+∠ABC=180°,
∴∠BCF=60°,
∴∠DCF=20°,
∴∠CDE=∠DCF=20°.
故选:A.
【点睛】
本题主要考查了平行线的性质,合理作出辅助线是解题的关键.
8.C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即
解析:C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即 ,
同理得:
∴每4个点为一个循环组依次循环,
∵,
∴A2021的坐标与的坐标相同,
即A2021的坐标为,
故选:C.
【点睛】
本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.
九、填空题
9.-1
【分析】
根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可.
【详解】
解:∵,
∴
解得:
∴x-y=-1
故答案为:-1.
【点睛】
此题考查的是非负性的应用,掌握算术平方
解析:-1
【分析】
根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可.
【详解】
解:∵,
∴
解得:
∴x-y=-1
故答案为:-1.
【点睛】
此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键.
十、填空题
10.-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:
解析:-1
【分析】
直接利用关于y轴对称点的性质得出a,b的值进而得出答案.
【详解】
解:∵点A(a,2019)与点是关于y轴的对称点,
∴a=-2020,b=2019,
∴a+b=-1.
故答案为:-1.
【点睛】
本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系.
十一、填空题
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
十二、填空题
12.(上式变式都正确)
【分析】
过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.
【详解】
解:如图
解析:(上式变式都正确)
【分析】
过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.
【详解】
解:如图所示,过点E作,过点F作,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,,,且,
∴,
故答案为:.
【点睛】
题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.
十三、填空题
13.113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定
解析:113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.
【详解】
解:如图,设∠B′FE=x,
∵纸条沿EF折叠,
∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,
∴∠BFC=∠BFE﹣∠CFE=x﹣21°,
∵纸条沿BF折叠,
∴∠C′FB=∠BFC=x﹣21°,
而∠B′FE+∠BFE+∠C′FE=180°,
∴x+x+x﹣21°=180°,解得x=67°,
∵A′D′∥B′C′,
∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°,
∴∠AEF=113°.
故答案为113°.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.
十四、填空题
14.-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+
解析:-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,
∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,
把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,
可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,
故答案为:﹣1
【点睛】
本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.
十五、填空题
15.(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),A
解析:(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),AB⊥x轴,AB=2,
∴|a|=2,
∴a=±2,
∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.
∴点A的坐标是(0,2)、(﹣4,﹣2).
故答案为:(0,2)、(﹣4,﹣2).
【点睛】
本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.
十六、填空题
16.(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4
解析:(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,
【详解】
解:由题意,粒子运动到点(3,0)时经过了15秒,
设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an,
则a1=2,a2=6,a3=12,a4=20,…,
a2-a1=2×2,
a3-a2=2×3,
a4-a3=2×4,
…,
an-an-1=2n,
各式相加得:
an-a1=2(2+3+4+…+n)=n2+n-2,
∴an=n(n+1).
∵44×45=1980,故运动了1980秒时它到点A44(44,44);
又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动.
故达到A44(44,44)时向左运动34秒到达点(10,44),
即运动了2014秒.所求点应为(10,44).
故答案为:(10,44).
故答案为:15,(10,44).
【点睛】
本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.
十七、解答题
17.(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要
解析:(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
十八、解答题
18.(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
解析:(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
;
(2),
,
,
解得:.
【点睛】
此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.
十九、解答题
19.见解析
【分析】
首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,
解析:见解析
【分析】
首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.
【详解】
解:∵∠1=∠2(已知),
且∠1=∠CGD(对顶角相等),
∴∠2=∠CGD(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠C=∠BFD(两直线平行,同位角相等),
又∵∠B=∠C(已知),
∴∠BFD=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.
二十、解答题
20.(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(
解析:(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(1),
(2)
【点睛】
本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
二十一、解答题
21.4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,
解析:4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,b=21,
∵16<21<25,
∴的整数部分是4,小数部分是.
【点睛】
本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
二十二、解答题
22.(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的
解析:(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
设大正方形的边长为xcm,
∴ ,
∴
∴大正方形的边长为cm;
(2)设圆的半径为r,
∴由题意得,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵正方形的面积为900cm2,
∴正方形的边长为30cm
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的
解析:(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
二十四、解答题
24.(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解析:(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解:(1)∵,
∴,
,;
(2)设灯转动秒,两灯的光束互相平行,
①当时,
,
解得;
②当时,
,
解得;
③当时,
,
解得,(不合题意)
综上所述,当t=15秒或63秒时,两灯的光束互相平行;
(3)设灯转动时间为秒,
,
,
又,
,
而,
,
,
即.
【点睛】
本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
二十五、解答题
25.(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平
解析:(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;
(3)根据规律直接计算即可.
【详解】
解:(1)∵∠A=40°,
∴∠ABC+∠ACB=140°,
∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,
∴∠OBC+∠OCB=70°,
∴∠BOC=110°.
(2)∵∠A=n°,
∴∠ABC+∠ACB=180°-n°,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=∠ABC+∠ACB
=(∠ABC+∠ACB)
=(180°﹣n°)
=90°﹣n°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.
故答案为:(90+n);
(3)由(2)得∠O=90°+n°,
∵∠ABO的平分线与∠ACO的平分线交于点O1,
∴∠O1BC=∠ABC,∠O1CB=∠ACB,
∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,
同理,∠O2=×180°+n°,
∴∠On=×180°+ n°,
∴∠O2017=×180°+n°,
故答案为:×90°+n°.
【点睛】
本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.
展开阅读全文