1、人教版中学七年级下册数学期末质量监测试卷附解析一、选择题1的平方根是()ABCD2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3下列各点中,在第三象限的点是( )ABCD4下列命题:过直线外一点有且只有一条直线与已知直线平行;在同一平面内,过一点有且只有一条直线与已知直线垂直;图形平移的方向一定是水平的;内错角相等其中真命题为( )ABCD5如图,直线,则的度数为( )ABCD6如图,下列各数中,数轴上点A表示的可能是( )A4的算术平方根B4的立方根C8的算术平方根D8的立方根7如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则
2、1的度数为( )A45B125C55D358如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,根据这个规律探索可得,第2021个点的坐标为( )ABCD九、填空题9若,则=_十、填空题10在平面直角坐标系中,已知点A的坐标为(2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是_十一、填空题11如图,已知AD是ABC的角平分线,CE是ABC的高,BAC=60,BCE=40,则ADB=_十二、填空题12如图,AD是EAC的平分线,ADBC,B40,则DAC的度数为_十三、填空题13如图所示是一张长方形形状的纸条,则的度数为_十四、填空题14对于三个数a,
3、b,c,用Ma,b,c表示这三个数的平均数,用mina,b,c表示这三个数中最小的数例如:M1,2,3,min1,2,31,如果M3,2x1,4x1min2,x3,5x,那么x_.十五、填空题15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_十六、填空题16如图:在平面直角坐标系中,已知P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1),P6(2,2),依次扩展下去,则点P2021的坐标为 _十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19如图所示,于点,于
4、点,若,则吗?下面是推理过程,请你填空或填写理由证明:于点,于点(已知),(_),(_),(_),(已知)(_),_(_)_(等量代换)二十、解答题20在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”例如:点的“3系置换点”的坐标为,即(1)点(2,0)的“2系置换点”的坐标为_;(2)若点的“3系置换点”的坐标是(-4,11),求点的坐标(3)若点(其中),点的“系置换点”为点,且,求的值;二十一、解答题21任意无理数都是由整数部分和小数部分构成的已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为例如:,即,显然的整数部分是2,小数部分是根据上面的材料,解决
5、下列问题:(1)若的整数部分是m,的整数部分是n,求的值(2)若的整数部分是,小数部分是y,求的值二十二、解答题22(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由二十三、解答题23如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC的内
6、部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数二十四、解答题24综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EFMN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出PAF、PBN和APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线mn,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动当点P在A、B(不与A、B重合)两点之间运动时
7、,设ADP,BCP则CPD,之间有何数量关系?请说明理由;若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出CPD,之间的数量关系二十五、解答题25已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线A
8、M上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值【参考答案】一、选择题1B解析:B【分析】直接根据平方根的定义进行解答即可【详解】解:(3)2=9,9的平方根是3故选:B【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根2B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进
9、行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3D【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标【详解】解:第三象限的点的横坐标是负数,纵坐标也是负数,结合选项符合第三象限的点是(-2,-4)故选:D【点睛】本题主要考查了点在第三象限内点的坐标的符号特点四个象限的符号特点分别是:第一
10、象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】根据两直线的位置关系即可判断.【详解】过直线外一点有且只有一条直线与已知直线平行,正确;在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;图形平移的方向不一定是水平的,故错误;两直线平行,内错角才相等,故错误故正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5B【分析】记1顶点为A,2顶点为B,3顶点为C,过点B作BDl1,由平行线的性质可得3+DBC=180,ABD+(1801)=180,由此得到3+2+(1801)=360,再结合已知条件即可求出结果【详解】如
11、图,过点B作BDl1,BDl1l2,3+DBC=180,ABD+(1801)=180,3+DBC+ABD+(1801)=360,即3+2+(1801)=360,又2+3=216,216+(1801)=360,1=36故选:B【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键6C【详解】解:由题意可知4的算术平方根是2,4的立方根是 2, 8的算术平方根是, 23,8的立方根是2,故根据数轴可知,故选C7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,
12、1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个
13、数,第列有个数则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上因为,则第2021个数一定在第64列,由下到上是第5个数因而第2021个点的坐标是故选:A【点睛】本题考查了坐标与图形,数字类的规律,根据图形得出规律是解此题的关键九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移
14、动规律的应用,能根据移动规律填空是解此题的关键十、填空题10(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与点Q关于x轴解析:(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与点Q关于x轴对称,点P的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键十一、填空题11100【分析】根据AD是ABC的角平分线,CE是ABC
15、的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADB解析:100【分析】根据AD是ABC的角平分线,CE是ABC的高,BAC60,可得BAD和CAD相等,都为30,CEA90,从而求得ACE的度数,又因为BCE40,ADBBCE+ACE+CAD,从而求得ADB的度数【详解】解:AD是ABC的角平分线,BAC60BADCADBAC30, CE是ABC的高,CEA90CEA+BAC+ACE180ACE30ADBBCE+ACE+CAD,BCE40ADB40+30+30100故答案为:100【点睛】本题考查三角形的内角和、角的平分线、三角形的一
16、个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案十二、填空题1240【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=40,AD是EAC的平解析:40【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=40,AD是EAC的平分线,DAC=EAD=40,故答案为:40【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解
17、题关键十三、填空题135【分析】根据平行线的性质可得3的度数,再根据邻补交的性质可得2=(180-3)2进行计算即可【详解】解:ABCD,1+3=180,1=105,3=解析:5【分析】根据平行线的性质可得3的度数,再根据邻补交的性质可得2=(180-3)2进行计算即可【详解】解:ABCD,1+3=180,1=105,3=180-105=75,2=(180-75)2=52.5,故答案为:52.5【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的十四、填空题14或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况
18、讨论即可得.【详解】M3,2x1,4x1=2x+1解析:或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1,M3,2x1,4x1min2,x3,5x,有如下三种情况:2x+1=2,x=,此时min2,x3,5x= min2,=2,成立;2x+1=-x+3,x=,此时min2,x3,5x= min2,=2,不成立;2x+1=5x,x=,此时min2,x3,5x= min2,=,成立,x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题
19、的关键是读懂题意,依题意分情况列出一元一次方程进行求解十五、填空题15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相
20、等是解题关键,注意到一点距离相等的点有两个,以防遗漏十六、填空题16(506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标20204,再根据第二项象限点的规律即可得出结论【详解】解:P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1
21、),P6(2,2),下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,202145051,点P2021在第二象限,点P5(2,1),点P9(3,2),点P13(4,3),点P2021(506,505),故答案为:(506,505)【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次
22、计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0 原式= 十八、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形
23、式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADE解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根
24、据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADEG,由平行线的性质得到1=2,等量代换得到E=2,由平行线的性质得到E=3,等量代换即可得到结论【详解】证明:ADBC于点D,EGBC于点G(已知), ADC=EGC=90(垂直的定义),ADEG(同位角相等,两直线平行),1=2(两直线平行,内错角相等),E=1(已知),E=2(等量代换),ADEG,E=3(两直线平行,同位角相等),2=3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线
25、的性质是解题的关键二十、解答题20(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据解析:(1);(2);(3)【分析】(1)根据题中新定义直接将m的值代入即可得出答案;(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案【详解】解:(1)点(2,0)的“2系置换点”的坐标为,即;(2)由题意得:解得: 点A的坐标为:;(3)点为即点B坐标为,为常数,且【点睛】本题考查了二元一次方
26、程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键二十一、解答题21(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是解析:(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是3,即m=3,的整数部分是2,即n=2,=0;(2),的整数部分是10,即2x=10,x=5,的小数部分是=,即y=,=【点睛】本题考查了二次根式的整数和小数部分
27、看懂题例并熟练运用是解决本题的关键二十二、解答题22(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出
28、长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键二十三、解答题23(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根解析:(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及
29、判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FEA+F
30、ED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在PDE中
31、,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键二十四、解答题24(1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,解析:(1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,PBNCPB180,即有PAFPBNAPB360;(2)过P作PEAD交ON于E,根据平行线的性质,可得到,
32、于是;分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照的方法即可解答【详解】解:(1)PAFPBNAPB360,理由如下:作PCEF,如图1,PCEF,EFMN,PCMN,PAFAPC180,PBNCPB180,PAFAPC+PBNCPB360,PAFPBNAPB360;(2), 理由如下:如答图,过P作PEAD交ON于E, ADBC,PEBC,当P在OB之间时,理由如下: 如备用图1,过P作PEAD交ON于E, ADBC,PEBC,;当P在OA的延长线上时,理由如下:如备用图2,过P作PEAD交ON于E, ADBC,PEBC,;综上所述,CPD,之间的数量关系是或.【点睛】本题考查
33、了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补难点是分类讨论作平行辅助线二十五、解答题25(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论【详解】解:(1
34、)直线l2l1,l3l1,l2l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)CE平分BCD,BCEDCEBCD,BCD70,DCE35,l2l3,CEDDCE35,l2l1,CAD90,ADC907020;故答案为:35,20;(3)CF平分BCD,BCFDCF,l2l1,CAD90,BCF+AGC90,CDBD,DCF+CFD90,AGCCFD,AGCDGF,DGFDFG;(4)N:BCD的值不会变化,等于;理由如下:l2l3,BEDEBH,DBEDEB,DBEEBH,DBH2DBE,BCD+BDCDBH,BCD+BDC2DBE,N+BDNDBE,BCD+BDC2N+2BDN,DN平分BDC,BDC2BDN,BCD2N,N:BCD【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键