资源描述
人教版初二上学期期末强化数学质量检测试题解析(一)
一、选择题
1.下列平面图形中,不是轴对称图形的是( )
A. B. C. D.
2.世界最大的单口球面射望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒数据0.00519用科学记数法表示为( )
A. B. C. D.
3.下列运算正确的是( )
A.3a2﹣a2=3 B.(a2)3=a6 C.a6÷a3=a2 D.(2a)3=6a3
4.若式子有意义,则的取值范围为( )
A. B. C. D.
5.下列各式从左到右的变形中,属于因式分解的是( )
A.6x2y=2x•3xy B.x2+4x+1=x(x+4)+1
C.x3﹣2xy=x(x2﹣2y) D.(a+3)(a﹣3)=a2﹣9
6.分式可变形为( )
A. B. C. D.
7.如图,AB=AD,∠B=∠DAE,下列选项( )不可判定△ABC≌△ADE
A.AC=DE B.BC=AE C.∠C=∠E D.∠BAC=∠ADE
8.已知关于x的分式方程的解为正数,则m的取值范围是( )
A. B.且
C. D.且
9.如图,△ABC中,,外角,则的大小是( )
A.60° B.50° C.40° D.30°
10.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC的距离分别为6.3.2,则图中实线所围成的阴影部分面积S是( )
A.50 B.44 C.38 D.32
二、填空题
11.若分式的值为0,则x=________.
12.已知点和点关于x轴对称,则______.
13.如图,数轴上有四条线段分别标有①②③④,若x为正整数,则表示的值的点落在线段_________上(填序号).
14.计算_____.
15.如图,△ABC中,∠ACB=90°,∠B=30°,AC=5cm,P为BC边的垂直平分线DE上一个动点,则△ACP周长的最小值为_____cm.
16.若为完全平方式,则m的值为_____.
17.实数,满足,则分式的值是 __.
18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2∶3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为__________.
三、解答题
19.分解因式:
(1)
(2)16-8(x-y)+(x-y)2
20.解分式方程:
21.如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么?
22.,点,分别在射线、上运动(不与点重合).
(1)如图①,、分别是和的平分线,随着点、点的运动, ;
(2)如图②,若是的平分线,的反向延长线与的平分线交于点.
①若,则 ;
②随着点,的运动,的大小是否会变化?如果不变,求的度数;如果变化,请说明理由.
24.某商场准备购进、两种商品进行销售.有关信息如下表:
进价(元)
售价(元)
产品
500
产品
120
已知2000元购进产品的数量与400元购进的产品数量相等.
(1)求表中的值;
(2)该商场准备购进、两种商品共50件,若要使这些产品售完后利润不低于3200元,种产品至少要购进多少件?
24.乘法公式的探究及应用.
数学活动课上,刘老师准备了若干个如图的三种纸片,种纸片边长为的正方形,种纸片是边长为的正方形,种纸片长为、宽为的长方形并用种纸片一张,种纸片一张,种纸片两张拼成如图的大正方形.
(1)观察图,请写出下列三个代数式:,,之间的等量关系____;
(2)若要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片_____张.
(3)根据(1)题中的等量关系,解决如下问题:
①已知:,,求的值:
②已知.求的值.
25.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.
(1)如图1,若点P与点C重合,求∠ABE的度数;
(2)如图2,若P在C点上方,求证:PD+AC=CE;
(3)若AC=6,CE=2,则PD的值为 (直接写出结果).
26.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)
(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;
(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.
【参考答案】
一、选择题
2.A
解析:A
【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案.
【详解】解:B、C、D都是轴对称图形,A不是轴对称图形,
故选:A.
【点睛】本题主要考查了轴对称图形的识别,正确掌握轴对称图形的定义是解题关键.
3.B
解析:B
【分析】用科学记数法表示绝对值小于1的数形如为负整数,据此解答.
【详解】解:数据0.00519用科学记数法表示为,
故选:B.
【点睛】本题考查科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键.
4.B
解析:B
【分析】利用合并同类项的法则,幂的乘方与积的乘方的法则,同底数幂的除法的法则对各项进行运算即可.
【详解】解:A、3a2-a2=2a2,故A不符合题意;
B、(a2)3=a6,故B符合题意;
C、a6÷a3=a3,故C不符合题意;
D、(2a)3=8a3,故D不符合题意;
故选:B.
【点睛】本题主要考查同底数幂的除法,幂的乘方与积的乘方,合并同类项,解答的关键是对相应的运算法则的掌握.
5.A
解析:A
【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.
【详解】解:由题意得x﹣4>0,
解得x>4,
故选:A.
【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键.
6.C
解析:C
【分析】利用因式分解的定义判断即可.
【详解】A、左边不是多项式,不符合因式分解的定义,故本选项不符合题意;
B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意;
C、符合因式分解的定义,故本选项符合题意;
D、是整式的乘法,不是因式分解,故本选项不符合题意.
故选:C.
【点睛】此题考查了因式分解,熟练掌握因式分解的定义是解本题的关键.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
7.B
解析:B
【分析】根据分式的基本性质即可得.
【详解】解:,
故选:B.
【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.
8.A
解析:A
【分析】结合题意,根据全等三角形的判定性质,对各个选项逐一分析,即可得到答案.
【详解】∵AC=DE,不构成△ABC≌△ADE的条件
∴A符合题意;
∵BC=AE,
∴△ABC和△ADE中
∴
∴B不符合题意;
∵∠C=∠E
△ABC和△ADE中
∴
∴C不符合题意;
∠BAC=∠ADE,
△ABC和△ADE中
∴
∴D不符合题意.
故选:A.
【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握三角形全等的判定性质,从而完成求解.
9.D
解析:D
【分析】解分式方程用m表示x,由关于x的分式方程的解是正数及分式方程的增根可求解m的取值范围.
【详解】解:方程两边同乘以x-1得
m+3=x-1,
解得x=m+4,
∵x的分式方程的解是正数,
∴m+4>0,
解得m>-4,
∵x-1≠0,即m+4-1≠0
解得x≠-3,
∴m的取值范围为m>-4且m≠-3.
故选:D.
【点睛】本题考查的是解一元一次不等式,分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.
10.B
解析:B
【分析】由∠BAC,∠ACD的度数,利用三角形的外角等于两不相邻的内角和即可求出∠B的度数.
【详解】解:∵∠BAC=60°,∠ACD=110°,
∴∠B=∠ACD-∠BAC=50°.
故选:B.
【点睛】本题考查了三角形的外角,熟练掌握三角形的外角性质是解题的关键.
11.D
解析:D
【分析】由已知和图形根据“K”字形全等,用AAS可证△FEA≌△MAB,△DHC≌△CMB,推出AM=EF=6,AF=BM=3, CM=DH=2,BM=CH=3,从而得出FH=14,根据阴影部分的面积=S梯形EFHD-S△EFA-S△ABC-S△DHC和面积公式代入求出即可.
【详解】∵AE⊥AB,EF⊥AF,BM⊥AM,
∴∠F=∠AMB=∠EAB=90°,
∴∠FEA+∠EAF=90°,∠EAF+∠BAM=90°,
∴∠FEA=∠BAM,
在△FEA和△MAB中
,
∴△FEA≌△MAB(AAS),
∴AM=EF=6,AF=BM=3,
同理CM=DH=2,BM=CH=3,
∴FH=3+6+2+3=14,
∴梯形EFHD的面积===56,
∴阴影部分的面积=S梯形EFHD-S△EFA-S△ABC-S△DHC
=
=32.
故选D.
【点睛】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.
二、填空题
12.5
【分析】求出分式的分子等于0且分母不为0时的的值即可.
【详解】解:由题意得:,
解得,
故答案为:5.
【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.
13.A
解析:1
【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出a,b的值即可.
【详解】解:∵点A(a,3)与点B(4,b)关于x轴对称,
∴a=4,b=-3,
则a+b=4-3=1.
故答案为:1.
【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键.
14.②
【分析】先根据分式的基本性质通分,约分对原分式进行化简,然后分析化简后的结果的范围即可得出答案.
【详解】
∵x为正整数
∴表示的值的点落在线段②上,
故答案为:②.
【点睛】本题主要考查分式的化简及估算,掌握分式的基本性质是解题的关键.
15.
【分析】利用幂的运算 原式变为,即可计算.
【详解】由积的乘方有:,
,
,
.
【点睛】本题考查积的乘方:,属于基础题.
16.15
【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.
【详解】解:如图,
∵P为
解析:15
【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.
【详解】解:如图,
∵P为BC边的垂直平分线DE上一个动点,
∴点C和点B关于直线DE对称,
∴当动点P和E重合时则△ACP的周长最小值,
∵∠ACB=90°,∠B=30°,AC=5,
∴AB=2AC=10,
∵AP+CP=AP+BP=AB=10,
∴△ACP的周长最小值=AC+AB=15,
故答案为:15.
【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.
17.10或-10##-10或10##±10
【分析】根据完全平方公式的形式求解即可.完全平方公式:,.
【详解】∵,
∴或,
解得:m=10或-10.
故答案为:10或-10.
【点睛】此题
解析:10或-10##-10或10##±10
【分析】根据完全平方公式的形式求解即可.完全平方公式:,.
【详解】∵,
∴或,
解得:m=10或-10.
故答案为:10或-10.
【点睛】此题考查了完全平方公式的形式,解题的关键是熟练掌握完全平方公式的形式.完全平方公式:,.
18.【分析】先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值.
【详解】解:,
.
.
,.
,.
原式
.
故答案为:
【点睛】本题考查了分式
解析:
【分析】先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值.
【详解】解:,
.
.
,.
,.
原式
.
故答案为:
【点睛】本题考查了分式的化简求值,解题的关键是把已知的等式变性后利用非负性质求得,.
19.40或75##75或40
【分析】设BE=2t,则BF=3t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:当BE=AG,BF=AE时;当BE=AE,BF=AG时,即可求解.
解析:40或75##75或40
【分析】设BE=2t,则BF=3t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:当BE=AG,BF=AE时;当BE=AE,BF=AG时,即可求解.
【详解】解: 根据题意得:设BE=2t,则BF=3t,
∵∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:
当BE=AG=2t,BF=AE时,
∵BF=AE,AB=100,
∴3t=100-2t,解得:t=20,
∴AG=BE=2t=2×20=40;
当BE=AE,BF=AG=3t时,
∵BE=AE,AB=100,
∴2t=100-2t,解得:t=25,
∴AG=BF=3t=3×25=75,
综上所述,AG的长为40或75.
故答案为:40或75
【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
三、解答题
20.(1)
(2)
【分析】(1)先提公因式x,再利用完全平方公式分解因式;
(2)根据完全平方公式分解即可.
(1)
解:原式=
=
(2)
解析:(1)
(2)
【分析】(1)先提公因式x,再利用完全平方公式分解因式;
(2)根据完全平方公式分解即可.
(1)
解:原式=
=
(2)
解:原式=.
【点睛】此题考查了因式分解:将一个多项式写成几个整式的积的形式,叫将多项式分解因式,熟记因式分解的定义并掌握因式分解的方法是解题的关键.
2【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可.
【详解】解:
去分母得:
去括号得:
移项合并得:
系数化为1得:
检验:当时,,
∴是原分式方程的解.
解析:
【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可.
【详解】解:
去分母得:
去括号得:
移项合并得:
系数化为1得:
检验:当时,,
∴是原分式方程的解.
【点睛】本题考查了解分式方程.解题的关键在于正确的去分母.
22.相等.见解析
【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论.
【详解】解:相等;
理由:
∵△ABE≌△DCE,
∴∠AEB=∠DEC,
∴∠DEC-∠AEC=∠A
解析:相等.见解析
【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论.
【详解】解:相等;
理由:
∵△ABE≌△DCE,
∴∠AEB=∠DEC,
∴∠DEC-∠AEC=∠AEB-∠AEC,
即:∠AED=∠BEC.
【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大.
23.(1)135
(2)①45;②不变,45°
【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论;
(2 )①根据三角形的内角和定理和角平分线的定义即可得到结论;
②由①的思路
解析:(1)135
(2)①45;②不变,45°
【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论;
(2 )①根据三角形的内角和定理和角平分线的定义即可得到结论;
②由①的思路可得结论.
(1)
解:( 1)直线与直线垂直相交于,
,
,
、分别是和角的平分线,
,,
,
;
故答案为:135;
(2)
①,,
,
,
是的平分线,
,
平分,
,
,
故答案为:45;
②的度数不随、的移动而发生变化,
设,
平分,
,
,
,
平分,
,
,
.
【点睛】本题考查了三角形的内角和定理,角平分线的定义,熟练掌握三角形的内角和定理是解题的关键.
24.(1)400
(2)20件
【分析】(1)由2000元购进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可;
(2)设种产品要购进件.由题意得:要使这些产品售完后利润不低于32
解析:(1)400
(2)20件
【分析】(1)由2000元购进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可;
(2)设种产品要购进件.由题意得:要使这些产品售完后利润不低于3200元,列出一元一次不等式,解不等式即可.
(1)
解:由题意得:
,
解这个方程得:,
经检验是原方程的根,
∴.
答:表中的值为:.
(2)
设种产品要购进件.由题意得:
,
解这个不等式得:,
答:种产品至少要购进20件.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,找出等量关系正确列出分式方程、列出一元一次不等式是解题的关键.
25.(1);(2)3;(3)①11;②1
【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b
解析:(1);(2)3;(3)①11;②1
【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b的正方形以及2个长为b宽为a的长方形的组合体,根据正方形及长方形的面积公式可得出S正方形=a2+2ab+b2;由图2中的图形面积不变,可得出(a+b)2=a2+2ab+b2;
(2)把括号打开,根据各项的系数就可判断卡片的张数;
(3)①由a+b=6可得出(a+b)2=36,将其和a2+b2=14代入(a+b)2=a2+2ab+b2中即可求出ab的值;
②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,再根据完全平方公式求解即可.
【详解】解:(1)方法:图是边长为的正方形,
;
方法:图可看成个边长为的正方形、个边长为的正方形以及个长为宽为的长方形的组合体,
.
.
故答案为:;
(2)∵,A卡片的面积为a2,B卡片的面积为b2,C卡片的面积为ab,根据各项系数可得,要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片张.
故答案为:.
(3)①,
,即,
又,
.
②设,则,,
,
,
,
,
,
,即.
【点睛】本题考查了完全平方公式的几何背景、正方形的面积以及长方形的面积,解题的关键是:利用长方形、正方形的面积公式,找出结论;根据面积不变,找出(a+b)2=a2+2ab+b2.
26.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;
(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可.
【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,
∴PA=PB,
∴∠PAB=∠PBA=30°,
∴∠BPE=∠PAB+∠PBA=60°,
∵PB=PE,
∴△BPE为等边三角形,
∴∠CBE=60°,
∴∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,
∵CD垂直平分AB,
∴CA=CB,
∵∠BAC=30°,
∴∠ACD=∠BCD=60°,
∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°,
∴∠GPC=∠HPC=30°,
∴PG=PH,CG=CH=CP,CD=AC,
在Rt△PGB和Rt△PHE中,
,
∴Rt△PGB≌Rt△PHE(HL).
∴BG=EH,即CB+CG=CE-CH,
∴CB+CP=CE-CP,即CB+CP=CE,
又∵CB=AC,
∴CP=PD-CD=PD-AC,
∴PD+AC=CE;
(3)①当P在C点上方时,由(2)得:PD=CE-AC,
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
②当P在线段CD上时,
如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,
此时Rt△PGB≌Rt△PHE(HL),
∴BG=EH,即CB-CG=CE+CH,
∴CB-CP=CE+CP,即CP=CB-CE,
又∵CB=AC,
∴PD=CD-CP=AC-CB+CE,
∴PD=CE-AC.
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
③当P在D点下方时,如图4,
同理,PD=AC-CE,
当AC=6,CE=2时,PD=3-2=1.
故答案为:1.
【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.
27.(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18
解析:(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;
(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;
(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.
(1)
证明:∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵点B与点D关于直线l对称,
∴BD⊥直线l,BC=CD,
∵直线l∥AB,
∴BD⊥AB,
∴∠ABD=90°,
∴∠CBD=∠CDB=45°,
∴∠BCD=90°,
∴∠ACB+∠BCD=180°,
∴A、C、D三点共线;
(2)
解:∵AC=10cm,BC=7cm,
∴当点F沿D→C方向时,0≤t≤3.5,
∴CE=10-t,CF=7-2t,
∵CE=2CF,
∴10-t=2(7-2t),
解得:t=.
(3)
解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,
∴∠MEC=∠FCN,
∵△CEM≌△CFN,
当CE=CF时,△CEM≌△CFN,
当点F沿D→C路径运动时,
10-t=7-2t,
解得,t=-3,不合题意,
当点F沿C→B路径运动时,
10-t=2t-7,
解得,t=,
当点F沿B→C路径运动时,
10-t=7-(2t-7×2),
解得,t=11,
∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,
∴0≤t≤10,
∴t=11时,已停止运动.
综上所述,当t=秒时,△CEM≌△CFN.
【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.
展开阅读全文