收藏 分销(赏)

人教版七年级数学下册期末解答题综合复习卷.doc

上传人:a199****6536 文档编号:1735709 上传时间:2024-05-08 格式:DOC 页数:31 大小:965.04KB
下载 相关 举报
人教版七年级数学下册期末解答题综合复习卷.doc_第1页
第1页 / 共31页
人教版七年级数学下册期末解答题综合复习卷.doc_第2页
第2页 / 共31页
人教版七年级数学下册期末解答题综合复习卷.doc_第3页
第3页 / 共31页
人教版七年级数学下册期末解答题综合复习卷.doc_第4页
第4页 / 共31页
人教版七年级数学下册期末解答题综合复习卷.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、人教版七年级数学下册期末解答题综合复习卷一、解答题1如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?2如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由3已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是

2、否符合国际标准球场的长宽标准,并说明理由4观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间5张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二、解答题6已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,F

3、M平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明7已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)8如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ

4、上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数9如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由10直线ABCD,点P为平面内一点,连接AP,CP(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与APC之

5、间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理由三、解答题11已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论12为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若

6、灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由13如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB

7、的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)14(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1)请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果无需写画法:在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线(2)已知,如图3,BE平分,CF平分求证:(写出每步的依据)15已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段

8、上),连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明(2)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)四、解答题16解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数17如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD

9、45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)18己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程

10、中的值是否变化?若不变,求出其值;若变化,求出变化范围.19模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)20如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的

11、直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、解答题1(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,

12、解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求

13、出长方形的边长,将长方形的长与正方形边长比较大小再判断即可【详解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键3符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb解析:符合,理由见解析【分析】根据宽与

14、长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提4(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17,边

15、长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间【详解】(1)由图可知,图中阴影正方形的面积是:55=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)所以45边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算5不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘

16、米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长

17、为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二、解答题6(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,

18、即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键7(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图解析:(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的

19、左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质8(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分

20、析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+

21、ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键9(1)35;(2)

22、55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=

23、110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x

24、=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键10(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PE

25、AB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据解析:(1)80;(2)AKCAPC,理由见解析;(3)AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得BAKAKE,DCKCK

26、E,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BAKDCKAPC【详解】(1)如图1,过P作PEAB,ABCD,PEABCD,APEBAP,CPEDCP,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFAB,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCAPC理由:如图3,过K作

27、KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,APCBAPDCP,BAKBAP,DCKDCP,BAKDCKBAPDCP(BAPDCP)APC,AKCAPC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算三、解答题11(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b

28、,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-90+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF=180,BCP=NEF,ACP+BCP=90,AOG+NEF

29、=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=GOP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,135-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解12(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】

30、(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和B

31、CD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BA

32、C=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补13(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解

33、析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发

34、生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键14(1)见解析;垂;(2)见解析【分析】(1)过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据解析:(1)见解析;垂;(2)见解析【分析】(1)过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;步骤(b)中,折纸实际上是在寻找过点的直线的垂线(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根

35、据平行线的判定得到结论【详解】(1)解:如图2所示:在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线故答案为垂;(2)证明:平分,平分(已知),(角平分线的定义),(已知),(两直线平行,内错角相等),(等量代换),(等式性质),(内错角相等,两直线平行)【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行线的性质与判定15(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(

36、2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB,1=2EMF=2+3,EMF=1+4EMF=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-A

37、EM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,EMN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作MPAB,过点N作NQAB,AEM+1=180,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的

38、性质,熟练掌握平行线的性质是解题的关键四、解答题16(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内

39、角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键17(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服