资源描述
初二数学上学期压轴题综合试卷(一)
1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且.
(1) ______°,______°;直线与的位置关系是______;
(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;
(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.
2.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接.
(1)如图①,当点D移动到线段的中点时,与的长度关系是:_______.
(2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论.
(3)如图③,当点D移动到线段的延长线上,并且时,求的度数.
3.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
4.在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接.
当点在线段上时,
①若点与点重合时,请说明线段;
②如图2,若点不与点重合,请说明;
当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).
5.如图,在△ABC中,点D为直线BC上一动点,∠DAE=90°,AD=AE.
(1)如果∠BAC=90°,AB=AC.
①如图1,当点D在线段BC上时,线段CE与BD的位置关系为__________,数量关系为__________;
②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?请说明理由;
(2)如图3,若△ABC是锐角三角形,∠ACB=45°,当点D在线段BC上运动时,证明:CE⊥BD.
6.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,.
(1)如图1,若,求的度数.
(2)如图1,求证:.
(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明).
7.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD.
(1)判断与的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.
8.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)求∠CAM的度数;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
【参考答案】
2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠
解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题;
(3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可;
【详解】解:(1)∵,
∴60-2α=0,β-30=0,
∴α=β=30°,
∴∠PFM=∠MFN=30°,∠EMF=30°,
∴∠EMF=∠MFN,
∴AB∥CD;
(2)结论:∠FMN+∠GHF=180°,
理由如下:如图2中,
∵AB∥CD,
∴∠MNF=∠PME,
∵∠MGH=∠MNF,
∴∠PME=∠MGH,
∴GH∥PN,
∴∠GHM=∠FMN,
∵∠GHF+∠GHM=180°,
∴∠FMN+∠GHF=180°;
(3)的值不变,=2.
理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R,
∵AB∥CD,
∴∠PEM1=∠PFN,
∵∠PER=∠PEM1,∠PFQ=∠PFN,
∴∠PER=∠PFQ,
∴ER∥FQ,
∴∠FQM1=∠R,
设∠PER=∠REB=x,∠PM1R=∠RM1B=y,
则有:,可得∠EPM1=2∠R,
∴∠EPM1=2∠FQM1,
∴=2.
【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题.
3.(1)
(2),证明见详解
(3)
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;
(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可
解析:(1)
(2),证明见详解
(3)
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;
(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数.
(1)
解:,
证明过程如下:由题意可知,
∵D为AB的中点,
∴,
∴,
∴.
∵为等边三角形,,
∴.
∵,
∴,
∴,
∴.
(2)
解:,
理由如下:在射线AB上截取,连接EF,如图所示,
∵为等边三角形,
∴,.
∵,,
∴为等边三角形,
∴,.
由题意知,
∴,
∴.
即.
∵,
∴.
在和中,,
∴,
∴DE与DC之间的数量关系是.
(3)
如图,在射线CB上截取,连接DF,如图所示,
∵为等边三角形,
∴,.
∵,,
∴为等边三角形,
∴,,
∴.
由题意知,
∵,
∴,
即.
∵,
∴.
在和中,,
∴,
∴.
∵ED⊥DC,
∴为等腰直角三角形,
∴.
【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
4.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
5.(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得
解析:(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;
(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.
【详解】(1)①证明:
,且E与A重合,
是等边三角形
在和中
②如图2,过点A做AG∥EF交BC于点G,
∵∠ADB=60° DE=DF
∴△DEF为等边三角形
∵AG∥EF
∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°
∴∠DAG=∠AGD
∴DA=DG
∴DA-DE=DG-DF,即AE=GF
由①易证△AGB≌△ADC
∴BG=CD
∴BF=BG+GF=CD+AE
(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,
由(1)可知,AE=GF,DC=BG,
故.
【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
6.(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角
解析:(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;
②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;
(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.
(1)
①∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠B=45°,CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,
即 CE⊥BD.
故答案为:CE⊥BD;CE=BD.
②当点D在BC的延长线上时,①的结论仍成立.
∵∠DAE=90°,∠BAC=90°,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
又AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴CE=BD,∠ACE=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即 CE⊥BD;
(2)
证明:过点A作AG⊥AC交BC于点G,
∵∠ACB=45°,
∴∠AGC=45°,
∴AC=AG,
即△ACG是等腰直角三角形,
∵∠GAD+∠DAC=90°=∠CAE+∠DAC,
∴∠GAD=∠CAE,
又∵DA=EA,
∴△GAD≌△CAE(SAS),
∴∠ACE=∠AGD=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即CE⊥BD.
【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.
7.(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证
解析:(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:延长AD至H,使DH=AD,连接BH,
∵EF=2AD,
∴AH=EF,
在△BDH和△CDA中,
,
∴△BDH≌△CDA,
∴HB=AC=AF,∠BHD=∠CAD,
∴AC∥BH,
∴∠ABH+∠BAC=180°,
∵∠EAF+∠BAC=180°,
∴∠EAF=∠ABH,
在△ABH和△EAF中,
,
∴△ABH≌△EAF,
∴∠AEF=∠ABH,EF=AH=2AD,
(3)
结论:∠GAF-∠CAF=60°.
由(1)得,AD=EF,又点G为EF中点,
∴EG=AD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,
∴△AEB是等边三角形,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°-∠CAF)=150°,
∴∠GAF-∠CAF=60°.
.
【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
8.(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关
解析:(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关系是:,数量关系是.
理由如下:
如图1,延长交于点.
于,
.
,,
,
,,.
,
.
AE⊥BC
∴,
,
.
(2)与的位置关系是:,数量关系是.
如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,
,
,
即.
,,
,
,.
AE⊥BC
∴,
又∵
,
.
(3)如图,线段AC与线段BD交于点F,
和是等边三角形,
,,,,
,
,
在和中,
,
∴,
,
与的夹角度数为.
【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.
9.(1)30°;(2)见解析;(3)是定值,理由见解析
【分析】(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;
(3
解析:(1)30°;(2)见解析;(3)是定值,理由见解析
【分析】(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;
(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论.
【详解】解:(1)是等边三角形,
.
线段为边上的中线,
,
.
故答案为:30°;
(2)与都是等边三角形,
,,,
,
.
在和中,
,
;
(3)是定值,,
理由如下:
①当点在线段上时,如图1,
由(2)可知,则,
又,
,
是等边三角形,线段为边上的中线,
平分,即,
.
②当点在线段的延长线上时,如图2,
与都是等边三角形,
,,,
,
,
在和中,
,
,
,
同理可得:,
.
③当点在线段的延长线上时,如图3,
与都是等边三角形,
,,,
,
,
在和中,
,
,
,
同理可得:,
,
,,
.
综上,当动点在直线上时,是定值,.
【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
展开阅读全文