资源描述
人教版中学七7年级下册数学期末试题含解析
一、选择题
1.下列各式中,没有平方根的是()
A.-22 B.(-2)2 C.-(-2) D.∣-2∣
2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )
A. B. C. D.
3.在直角坐标系中内点在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,是假命题的是( )
A.两条直线被第三条直线所截,同位角相等
B.同旁内角互补,两直线平行
C.在同一平面内,过一点有且只有一条直线与已知直线垂直
D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.下列说法正确的是( )
A.是分数 B.互为相反数的数的立方根也互为相反数
C.的系数是 D.的平方根是
7.如图,直线,E为上一点,G为上一点,,垂足为F,若,则的度数为( )
A. B. C. D.
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,⋯⋯以此类推,当点A1的坐标为(2,1)时,点A2021的坐为( )
A.(2,1) B.(0,﹣3) C.(﹣4,﹣1) D.(﹣2,3)
九、填空题
9.的算术平方根是 _____.
十、填空题
10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______.
十一、填空题
11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点. 如果∠A=α,那么∠BOC的度数为____________.
十二、填空题
12.将一条长方形纸带按如图方式折叠,若,则的度数为________°.
十三、填空题
13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度.
十四、填空题
14.已知的小数部分是,的小数部分是,则________.
十五、填空题
15.已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为____.
十六、填空题
16.如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_________.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.求下列各式中x的值:
(1)9x2-25=0;
(2)(x+3)3+27=0.
十九、解答题
19.完成下面的证明:
已知:如图, , 和相交于点, 平分,和相交于点,.
求证:.
证明:(已知),
(______________),
________(两直线平行,同位角相等).
又(已知),
______(________)
(等量代换) .
平分(已知) ,
_______(角平分线的定义).
(_________).
二十、解答题
20.在平面坐标系中描出下列各点且标该点字母:
(1)点,,,;
(2)点在轴上,位于原点右侧,距离原点2个单位长度;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度.
二十一、解答题
21.阅读下面的文字,解答问题
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:<<,即2<<3,
∴的整数部分为2,小数部分为(﹣2)
请解答:
(1)整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.
(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.
二十二、解答题
22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
二十三、解答题
23.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
二十四、解答题
24.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足.
(1)如图①,求证:AD∥BC;
(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD;
(Ⅰ)如图②,当时,求∠DAM的度数;
(Ⅱ)如图③,当时,求∠ACD的度数.
二十五、解答题
25.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
把各数进行化简,再根据平方根的性质即可进行求解.
【详解】
解:A、-22=-4,是负数,负数没有平方根,故该选项符合题意;
B、(-2)2=4,是正数,正数有平方根,故该选项不符合题意;
C、-(-2)=2,是正数,正数有平方根,故该选项不符合题意;
D、∣-2∣=2,是正数,正数有平方根,故该选项不符合题意;
故选:A.
【点睛】
本题主要考查了平方根,熟练掌握平方根的性质是解本题的关键.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.D
【分析】
根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答.
【详解】
解:∵点M(a,b)在第三象限,
∴a<0,b<0,
∴-a>0,
那么点N(-a,b)所在的象限是:第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.
【详解】
解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;
B. 同旁内角互补,两直线平行,真命题,不符合题意;
C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;
D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;
故选A.
【点睛】
本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.
5.D
【分析】
根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.
【详解】
解:,,
,
平分,
,故①正确;
,
,
,故②正确;
,,
,故③正确;
,,
,故④正确.
正确为①②③④,
故选:D.
【点睛】
本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.
6.B
【分析】
根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.
【详解】
∵是无理数,
∴A错误,
∵互为相反数的数的立方根也互为相反数,
∴B正确,
∵的系数是,
∴C错误,
∵的平方根是±8,
∴D错误,
故选B.
【点睛】
本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.
7.C
【分析】
根据内角和定理可知的度数,再根据平行线的性质即可求得的度数.
【详解】
∵
∴
∵
∴
∵
∴.
故选:C
【点睛】
本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.
8.A
【分析】
根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A
解析:A
【分析】
根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.
【详解】
解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,
∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).
∵2021=505×4+1,
∴点A2021的坐标为(2,1).
故选:A.
【点睛】
本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.
九、填空题
9.2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去
解析:2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.
十、填空题
10.【分析】
如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质
解析:
【分析】
如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标.
【详解】
解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,
设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1),
∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°,
∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴,
∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3).
故答案为:(4,﹣3).
【点睛】
本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键.
十一、填空题
11.90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
解析:90°+
【解析】
∵∠ABC、∠ACB的角平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,
∵在△OBC中,∠BOC=180°-∠OBC-∠OCB,
∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+.
十二、填空题
12.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.
十三、填空题
13.35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折
解析:35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折叠可知:∠DEF=∠DEB,
∴∠BDE=∠DEB,又∠B=30°,
∴∠BDE=(180°-30°)=75°;
当EF∥AC时,
如图,∠C=∠BEF=50°,
由折叠可知:∠BED=∠FED=25°,
∴∠BDE=180°-∠B=∠BED=125°;
如图,EF∥AC,
则∠C=∠CEF=50°,
由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,
则∠CED+50°=180°-∠CED,
解得:∠CED=65°,
∴∠BDE=∠CED-∠B=65°-30°=35°;
综上:∠BDE的度数为35°或75°或125°.
【点睛】
本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.
十四、填空题
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴2<<3,∴-3<-<-2,
∴7<5+<8,2<5-<3,
∴5+的整数部分是7,5-的整数部分为2,
∴a=5+-7=-2,b=5--2=3-,
∴12019=1.
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
十五、填空题
15.(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数
解析:(5,2)
【分析】
根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标.
【详解】
解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,
又因为点P到x轴的距离为2,到y轴的距离为5,
所以点P的横坐标为5,纵坐标为2,
所以点P的坐标为(5,2),
故答案为(5,2).
【点睛】
此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键.
十六、填空题
16.(0,2).
【分析】
利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:由已知,正方形周长为16,
∵M、N速度分别为1单
解析:(0,2).
【分析】
利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:由已知,正方形周长为16,
∵M、N速度分别为1单位/秒,3单位/秒,
则两个物体每次相遇时间间隔为=4秒,
则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)
∵2021=4×505…1,
∴第2021次两个物体相遇位置为(0,2),
故答案为:(0,2).
【点睛】
本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的
解析:(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.
十九、解答题
19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【分析】
由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.
【详解】
证明:(已知),
(内
解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【分析】
由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.
【详解】
证明:(已知),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
又(已知),
(两直线平行,同位角相等),
(等量代换).
平分(已知),
(角平分线的定义).
(等量代换).
故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【点睛】
本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.
二十、解答题
20.(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后
解析:(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可.
【详解】
解:(1)如图 ,
(2)∵点在轴上,位于原点右侧,距离原点2个单位长度,
∴点 ;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,
∴点 .
【点睛】
本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.
二十一、解答题
21.(1)7;-7;(2)5;(3)13-.
【分析】
(1)估算出的范围,即可得出答案;
(2)分别确定出a、b的值,代入原式计算即可求出值;
(3)根据题意确定出等式左边的整数部分得出y的值,进而求
解析:(1)7;-7;(2)5;(3)13-.
【分析】
(1)估算出的范围,即可得出答案;
(2)分别确定出a、b的值,代入原式计算即可求出值;
(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.
【详解】
解:(1)∵7﹤﹤8,
∴的整数部分是7,小数部分是-7.
故答案为:7;-7.
(2)∵3﹤﹤4,
∴,
∵2﹤﹤3,
∴b=2
∴|a-b|+
=|-3-2|+
=5-+
=5
(3)∵2﹤﹤3
∴11<9+<12,
∵9+=x+y,其中x是整数,且0﹤y<1,
∴x=11,y=-11+9+=-2,
∴x-y=11-(-2)=13-
【点睛】
本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.
二十二、解答题
22.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
二十三、解答题
23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,
解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
二十四、解答题
24.(1)证明见解析;(2)(Ⅰ);(Ⅱ).
【分析】
(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得
解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ).
【分析】
(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;
(Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得.
【详解】
(1),
,
又,
,
;
(2)(Ⅰ),
,
,
,
由(1)已得:,
,
;
(Ⅱ)设,则,
平分,
,
,
,
,
由(1)已得:,
,即,
解得,
,
又,
.
【点睛】
本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.
二十五、解答题
25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
展开阅读全文