收藏 分销(赏)

五四制鲁教版六年级上册易错题集合.doc

上传人:1587****927 文档编号:1445051 上传时间:2024-04-26 格式:DOC 页数:16 大小:152KB
下载 相关 举报
五四制鲁教版六年级上册易错题集合.doc_第1页
第1页 / 共16页
五四制鲁教版六年级上册易错题集合.doc_第2页
第2页 / 共16页
五四制鲁教版六年级上册易错题集合.doc_第3页
第3页 / 共16页
五四制鲁教版六年级上册易错题集合.doc_第4页
第4页 / 共16页
五四制鲁教版六年级上册易错题集合.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、 “有理数运算”常见错误剖析 一、概念不清例1 a和a各是什么数?错解:a是正数,a是负数评析:带正号的数不一定是正数,带负号的数不一定是负数,上述解法错在没弄清正、负数的概念。正解:当a大于零时,a是正数,a是负数;当a小于零时,a是负数,a是正数;当a等于零时,a和a都是零。例2 若则m是( )A. 正数 B. 负数 C. 非正数 D. 非负数错解:选B评析:由于“0的相反数是0”,因此“0的绝对值是0”也可以说成是“0的绝对值是它的相反数”,上述解法错在对绝对值概念的理解不透彻。正解:选C二、符号问题例3 计算:错解:原式=评析:由积的符号法则可知,几个不等于0的数相乘,当负因数有奇数个

2、时,积为负;当负因数有偶数个时,积为正,上述解法错在符号上。正解:原式=例4 计算:错解:原式=1210=2评析:错解将15前面的“”号既视为运算符号,又视为性质符号,重复使用,以致出错,应二选其一。(按照顺序,不要跨步; 先定符号,再定大小)正解:原式=12+10=22三、对乘方的意义理解不透彻例5 计算:错解:原式=8+3(6)(6)=8+(18)+6=20评析:此解有三处错,都是把乘方运算当作底数与指数相乘,这是由不理解乘方的意义造成的。正解:原式=16+31(8)=16+3+8=5例6 计算:错解:原式=9+4(8)=9+4+8=21评析:错解忽略了与的区别:表示4的平方的相反数,其结

3、果为16;而表示两个(4)相乘,其结果为16。正解:原式=9+4(8)=9+4+8=3四、违背运算顺序例7 计算:6(10)(4)错解:原式=16(4)=4评析:有理数混合运算的顺序是:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的;对同一级运算,应从左至右进行。正解:原式=例8 计算:错解:原式=8=8评析:乘除法为同一级运算,应从左至右进行。正解:原式=84(4)=128例9.(新疆中考题)在数轴上,离原点距离等于3的数是_.分析:本题可绝对值的意义直接求解,在数轴上,离原点距离等于3的数有两个,分别是3和3,它们到原点的距离相等.例10.分类讨论(山东泰安中考题)若,且,则_

4、.解析: ,.又,异号,即.所以.例11(四川眉山中考题)计算:.答案:3.分析:对于有理数的混合运算,应严格按照运算顺序进行,并根据题目的特点,灵活选用运算律,以提高运算速度. 整式的加减易错题大集合一:选择题1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是( )A、三次多项式 B、四次多项式或单项式 C、七次多项式D、四次七项式2、多项式x2y(xy-x2y2+2x3y2)的次数是( )A、10次B、12次C、6次D、8次3、多项式2x3x2y2+y3+25的次数是( )A、二次B、三次C、四次D、五次4、关于多项式26+3x5+x4+x3+x2+x的说法正确的是( )A、是六

5、次六项式B、是五次六项式C、是六次五项式D、是五次五项式5、如果多项式如果多项式(a+1)x4+xb3X54是关于x的四次三项式,则ab的值是( )几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。多项式和单项式统称为整式。A、4 B、-4 C、5 D、-56、若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零上述结论中,不正确的有( )个A、5B、4C、3D、27、x表示一个两位数,现将数字5放在x的左边,则组成的三位数是( )A

6、、5xB、10x+5C、100x+5D、5100+x8、两列火车都从A地驶向B地已知甲车的速度是x千米/时,乙车的速度是y千米/时经过3时,乙车距离B地5千米,此刻甲车距离B地( )A、3(-x+y)-5千米B、3(x+y)-5千米C、3(-x+y)+5千米D、3(x+y)+5千米9、已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为( )已知a+b+c=0,则代数式+的值为( )10、若|a|=2,|b|=3,且ab,则|a-b|的值为( )A、-5或-1B、1或-1C、5或3D、5或111、任选一个大于-4的负整数填在里,任选一个小于3的正整数填在里,对于“+”运算结

7、果为负数的情况有( )种A、2种B、3种C、4种D、512、若|m|=3,|n|=7,且m-n0,则m+n的值是( )A、10 B、4 C、-10或-4 D、4或-413、一个圆柱体的底面半径扩大为原来的3倍,高为原来的,则这个圆柱体的体积是原来的( )倍A、1 B、9 C、 D、314、若M=3x2-5x+2,N=3x2-4x+2,则M,N的大小关系( )A、MN B、M=N C、MN D、以上都有可能15、甲、乙两人同时从相距150千米的两地出发,相向而行,甲每小时走8千米,乙每小时7千米,甲带了一头狗,狗每小时跑15千米,这条狗同甲一道出发,碰到乙时,它又掉头朝甲跑去,碰到甲时又掉头朝乙

8、跑去,直到两人相遇,这条小狗一共跑了多少千米( )A、100千米B、120千米C、140千米D、150千米16、下列说法中正确的是( )A、x的系数是0 B、24与42不是同类项C、y的次数是0 D、23xyz是三次单项式21、设a是最小的自然数,b是最大的负整数,c,d分别是单项式-x的系数和次数,则a,b,c,d四个数的和是( )A、-1B、0C、1D、322、对任意实数y,多项式2y2-10y+15的值是一个( )A、负数B、非负数C、正数D、无法确定正负23、一个五次多项式,它的任何一项的次数( )A、都小于5 B、都等于5 C、都不大于5 D、都不小于524、m,n都是正整数,多项式

9、xm+yn+3m+n的次数是( )A、2m+2n B、m或n C、m+n D、m,n中的较大数25、多项式3a2b-2ab+3的项数和次数分别为( )A、3,2B、3,5C、3,3D、2,326、若多项式y2+(m-3)xy+2x|m|是三次三项式,则m的值为( )A、-3 B、3 C、3或-3 D、227、下列说法正确的是( )A.b的指数是0 B.b没有系数C.3是一次单项式 D.3是单项式31、整式a-(bc)去括号应为()A.a-b+c B.a+b-cC.-a+b+c D.-a-b-c32、当k取()时,x2-3kxy-3y2+xy-8多项式中不含xy项A.0 B. C. D.-33、

10、若A与B都是二次多项式,则AB:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有()A.2个B.3个C.4个D.5个34、在(a-b+c)(a+b-c)=a+( )a-( )的括号内填入的代数式是()A.(a-b) B.(b-c)C.(a+b) D.(c-b)35、下列整式中,不是同类项的是()A.3x2y与yx2 B.1与2 C.x2n与3102nx2 D.a2b与b2a37.下列说法正确的是()A.的项是B.是多项式C.是三次多项式D.都是整式40.(ab+c)的相反数是( )二:填空题1、X表示一个两位数,y表示一

11、个三位数,如果将x放在y的左边,则得到一个五位数是_.2、一个三位数百位数字是3,十位数字和个位数字组成的两位数字是b,用代数式表示这个三位数是_3、x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_4、加拿大数学家约翰菲尔兹正在看一本数学书,他从第a页看起,一直看到第n页(an),他看了_页书5、小亮从一列火车的第x节车厢数起,一直数到第y节车厢(yx),他数过的车厢的节数是_节6、用代数式表示:x、y两数的平方和减去它们乘积的2倍是_7、用适当的符号表示:x的2倍与1的差不小于x的3倍_8、一个三位数的百位数字为5,十位数字为a,个位数字为b,则(

12、1)这个三位数是_;(2)把个位数字和百位数字交换位置,所得的三位数是_9、某种商品每件标价a元,若以标价的八折销售,每件仍可获利b元,则这种商品每件的进价为_10、一箱苹果售价a元,箱子与苹果的总质量为mkg,箱子的质量为nkg,则每千克苹果的售价是_元11、一个两位数,十位数字为x,个位数字为y,若在两个数字中间插入数字0,则所成的三位数为_12、李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款_元13、如果一个三位数为x,把数字1放在它的右边得到一个四位数,这个四位

13、数可表示为_14、一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_15、如果a是最小的正整数,b是绝对值最小的数,c与互为相反数,那么-=_16、一次聚会中,有5人参加,如果每两个人都握手一次,共握手_次4/617、当a3时,|a-3|+a=_18、有理数a,b满足a0b,且|a|b|,则代数式|a+b|+|2a-b|化简后结果为_-19、去括号_=_20、合并同类项_21、化简_22、化简_23、当_24、计算m+n-(m-n)的结果为_25、有一道题目是一个多项式减去+14x-6,小强误当成了加法计算,结果得到2-x+3,则原来的多项式是_26、某校

14、为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=_27、若a0,则|1-a|+|2a-1|+|a-3|=_28、化简(2+2m-1)-(5-+2m)=_29、若(a+2)2+|b+1|=0,则5a-2b-3a-(4a-2b)=_三:解答题当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:“”当作数字,而不是字母)二、化简6、7、四、化简求值8、9、,10、五、简答题11、求12、一个三位数,百、十、个位上的数字恰好是顺次连续奇数,个位上的数字最大,设

15、十位上的数字为2n-5,求这个三位数。13、一根铁丝长米,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩下多少米?如果多项式(a+1)x4+xb3X54+=( )多项式3x|m|y2+(m+2)x2y-1是四次三项式,则m的值为()如果多项式(a+1)x5xb3x54是关于x的四次三项式,则ab的值是()如果多项式(a+1)x4xb3x54是关于x的四次三项式,则ab的值是()已知多项式-m3n2-2中,含字母的项的系数为a,多项式的次数为b,常数项为c,则a+b+c=_关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值有一道题目是

16、一个多项式减去x2+14x6,小强误当成了加法计算,结果得到2x2x+3则原来的多项式是( )已知ab,那么ab和它的相反数的差的绝对值是( )某校需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为( )若a0,则|1a|+|2a1|+|a3|=若(a+2)2+|b+1|=0,则5ab2ab3ab(4ab2ab)=第五章一元一次方程查漏补缺题 供题:宁波七中 杨慧一、解方程和方程的解的易错题:一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程的解法;难点:准确运用等式的性质进行方程同解变

17、形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么

18、x=-2(2)解方程20-3x=5,移项后正确的是( )A.-3x=5+20 B.20-5=3x C.3x=5-20 D.-3x=-5-20(3)解方程-x=-30,系数化为1正确的是( )A.-x=30 B.x=-30 C.x=30 D. (4)解方程 ,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以 ,得 C.去括号,得x-24=7D.方程整理,得 解析:(1) 正确选项D。方程同解变形的理论依据一为数的运算法则,运算性质;一为等式性质(1)、(2)、(3),通常都用后者,性质中的关键词是“两边都”和“同一个”,即对等式变形必须两边同时进行加

19、或减或乘或除以,不可漏掉一边、一项,并且加减乘或除以的数或式完全相同。选项A错误,原因是没有将“等号”右边的每一项都除以3;选项B错误,原因是左边减去x-3时,应写作“-(x-3)”而不“-x-3”,这里有一个去括号的问题;C亦错误,原因是思维跳跃短路,一边记着是除以而到另一边变为乘以了,对一般象这样小数的除法可以运用有理数运算法则变成乘以其倒数较为简捷,选项D正确,这恰好是等式性质对称性即a=bb=a。(2) 正确选项B。解方程的“移项”步骤其实质就是在“等式的两边同加或减同一个数或式”性质,运用该性质且化简后恰相当于将等式一边的一项变号后移到另一边,简单概括就成了“移项”步骤,此外最易错的

20、就是“变号”的问题,如此题选项A、C、D均出错在此处。解决这类易错点的办法是:或记牢移项过程中的符号法则,操作此步骤时就予以关注;或明析其原理,移项就是两边同加或减该项的相反数,使该项原所在的这边不再含该项-即代数和为0。(3)正确选项C。选项B、D错误的原因虽为计算出错,但细究原因都是在变形时,法则等式性质指导变形意识淡,造成思维短路所致。(4)等式性质及方程同解变形的法则虽精炼,但也很宏观,具体到每一个题还需视题目的具体特点灵活运用,解一道题目我们不光追求解出,还应有些简捷意识,如此处的选项A、B、D所提供方法虽然都是可行方法,但与选项C相比,都显得繁。例2.(1)若式子 3nxm+2y4

21、和 -mx5yn-1能够合并成一项,试求m+n的值。(2)下列合并错误的个数是( )5x6+8x6=13x123a+2b=5ab8y2-3y2=56anb2n-6a2nbn=0(A)1个 (B)2个 (C)3个 (D)4个解析:(1)3nxm+2y4和-mx5yn-1能够合并,则说明它们是同类项,即所含字母相同,且相同字母的指数也相同。此题两式均各含三个字母n、x、y和m、x、y,若把m、n分别看成2个字母,则此题显然与概念题设不合,故应该把m、n看作是可由已知条件求出的常数,从而该归并为单项式的系数,再从同类项的概念出发,有: 解得m=3 ,n=5从而m+n=8评述:运用概念定义解决问题是数

22、学中常用的方法之一,本题就是准确地理解了“同类项”、“合并”的概念,认真进行了逻辑判断;确定了m、n为可确定值的系数。(2)“合并”只能在同类项之间进行,且只对同类项间的系数进行加减运算化简,这里的实质是逆用乘法对加法的分配律,所以4个合并运算,全部错误,其中、就不是同类项,不可合并,、分别应为:5x6+8x6=13x68y2-3y2=5y2例3.解下列方程(1)8-9x=9-8x(2) (3) (4) 解:(1)8-9x=9-8x -9x+8x=9-8 -x=1 x=1易错点关注:移项时忘了变号;(2) 法一: 4(2x-1)-3(5x+1)=248x-4-15x-3=24-7x=31 易错

23、点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;法二:(就用分数算) 此处易错点是第一步拆分式时将 ,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即 ;(3) 6x-3(3-2x)=6-(x+2)6x-9+6x=6-x-212x+x=4+913x=13x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;(4) 2(4x-1.5)-5(5x-0.8)=10(1.2-x) 8x-3-25x+4=12-10x -7x=11 评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现

24、 ,而是两边同乘以0.50.2进行去分母变形,更有思维跳跃的同学认为0.50.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)概述:无论什么样的一元一次方程,其解题步骤概括无非就是“移项,合并,未知数系数化1”这几个步骤,从操作步骤上来讲很容易掌握,但由于进行每个步骤时都有些需注意的细节,许多都是我们认识问题的思维瑕点,需反复关注,并落实理解记忆才能保证解方程问题做的正确率。若仍不够自信,还可以用检验步骤予以辅助,理解方程“解”的概念。例4.下列方程后面括号内的数,都是该方程的解的是( )A.4x-1=9 B. C.x2+2=3x (-1,

25、2)D.(x-2)(x+5)=0 (2,-5)分析:依据方程解的概念,解就是代入方程能使等式成立的值,分别将括号内的数代入方程两边,求方程两边代数式的值,只有选项D中的方程式成立,故选D。评述:依据方程解的概念,解完方程后,若能有将解代入方程检验的习惯将有助于促使发现易错点,提高解题的正确率。例5.根据以下两个方程解的情况讨论关于x的方程ax=b(其中a、b为常数)解的情况。(1)3x+1=3(x-1)(2) 解:(1)3x+1=3(x-1)3x-3x=-3-10x=-4显然,无论x取何值,均不能使等式成立,所以方程3x+1=3(x-1)无解。(2) 0x=0显然,无论x取何值,均可使方程成立

26、,所以该方程的解为任意数。由(1)(2)可归纳:对于方程ax=b当a0时,它的解是 ;当a=0时,又分两种情况:当b=0时,方程有无数个解,任意数均为方程的解;当b0时,方程无解。二、从实际问题到方程(一)本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的_;(2)“设”:用字母(例如x)表示问题的_;(3)“列”:用字母的代数式表示相关的量,根据_列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答(6)“答”:答出题目中所问的问题。(二)易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方

27、形.若每个正方形的面积为400平方厘米,应选择下列表中的哪种型号的钢筋?型号ABCD长度(cm)90708295思路点拨:解出方程有两个值,必须进行检查求得的值是否正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.三、行程问题(一)本课重点,请你理一理1.基本关系式:_ _ ;2.基本类型: 相遇问题; 相距问题; _ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_ 逆水(风)速度=_(

28、二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢? 思路点拨:此题是关于行程问题中的同向而行类型。由题可知,甲、乙首次相遇时,乙走的路程比甲多一圈;第二次相遇他们之间的路程差为两圈的路程。所以经过8分钟首次相遇,经过16分钟第二次相遇。 2.你在作业中有错误吗?请记录下来,并分析错误原因.四、调配问题(一)本课重点,请你理一理初步学会列方程解调配问题各类型的应用题;分析总量等于_一类应用题的基本方法和关键所在.(二)易错题,请你想一想1

29、. 为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?2. 甲种糖果的单价是每千克20元,乙种糖果的单价是每千克15元,若要配制200千克单价为每千克18元的混合糖果,并使之和分别销售两种糖果的总收入保持不变,问需甲、乙两种糖果各多少千克?五、工程问题(一)本课重点,请你理一理工程问题中的基本关系式:工作总量工作效率工作时间 各部分工作量之和 = 工作总量 (二)易错题,请你想一想1.一项工程,甲单独做要10天完成

30、,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?思路点拨:此题注意的问题是报酬分配的根据是他们各自的工作量。所以甲、乙两人各得到800元、200元.2.你在作业中有错误吗?请记录下来,并分析错误原因.六、储蓄问题(一)本课重点,请你理一理1.本金、利率、利息、本息这四者之间的关系:(1)利息=本金利率(2)本息=本金+利息(3)税后利息=利息-利息利息税率2通过经历“问题情境建立数学模型解释、应用与拓展”的过程,理解和体会数学建模思想在解决实际问题中的作用.(二)易错题,请你想一想1.一种商品的买入单价为1500元,如果出售一件商品获得的毛利润是卖出单价的15%,那么这种商品出售单价应定为多少元?(精确到1元)思路点拨:由“利润=出售价-买入价”可知这种商品出售单价应定为2000元.2.你在作业中有错误吗?请记录下来,并分析错误原因。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服