1、1 已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N种型号的时装套数为,用这批布料生产这两种型号的时装所获总利润为元。(1)求与的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少? 2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。(1)写出每月电话费(元
2、)与通话次数之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。(1)设运输这批货物的总运费为(万元),用A型货厢的节数为(节),试写出与之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请
3、你设计出来。(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为(元),生产A种产品件,试写出与之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?5 为加强公民的节水意识,某
4、城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为(立方米),应交水费为(元)(1)分别写出用水未超过7立方米和多于7立方米时,与之间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?6 辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。(1)设用辆车装运A种苹
5、果,用辆车装运B种苹果,根据下表提供的信息求与之间的函数关系式,并求的取值范围;(2)设此次外销活动的利润为W(百元),求W与的函数关系式以及最大利润,并安排相应的车辆分配方案。苹果品种ABC每辆汽车运载量 (吨)2.22.12每吨苹果获利 (百元)6857 在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克.每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.在成人按规定剂量服药后:(1)分别求出x1,x1时y与x之间的函数
6、关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时? 8、某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生.为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理.现有两种方案可供选择.方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理.每处理1吨废渣需付0.1万元的处理费.(1)设工厂每月生产x件产品,每月利润为y万元,分别求出用方案一和方案二
7、处理废渣时,y与x之间的函数关系式(利润=总收入-总支出);(2)如果你作为工厂负责人,那么如何根据月生产量选择处理方案,既可达到环保要求又最合算.一次函数应用题答案1,解:由题意得: 解得:4044与的函数关系式为:,自变量的取值范围是:4044在函数中,随的增大而增大 当44时,所获利润最大,最大利润是:3820(元)2、解;(1)由题意得:与之间的函数关系式为:(2)当50时,由于60,所以20(元) 当100时,由于60,所以25.2(元)(3)27.820 60 解得:120(次)3、解:(1)由题意得:与之间的函数关系式为:(2)由题意得: 解得:2830 是正整数 28或29或3
8、0 有三种运输方案:用A型货厢28节,B型货厢22节;用A型货厢29节,B型货厢21节;用A型货厢30节,B型货厢20节。(3)在函数中 随的增大而减小 当30时,总运费最小,此时31(万元) 方案的总运费最少,最少运费是31万元。4、解;(1)设需生产A种产品件,那么需生产B种产品件,由题意得: 解得:3032 是正整数 30或31或32有三种生产方案:生产A种产品30件,生产B种产品20件;生产A种产品31件,生产B种产品19件;生产A种产品32件,生产B种产品18件。(2)由题意得; 随的增大而减小 当30时,有最大值,最大值为: 45000(元) 答:与之间的函数关系式为:,(1)中方
9、案获利最大,最大利润为45000元。5、解:(1)当07时,当7时, (2)当7时,需付水费:71.28.4(元)当10时,需付水费:71.21.9(107)14.1(元)设这个月用水未超过7立方米的用户最多可能有户,则:化简得:解得: 答:该单位这个月用水未超过7立方米的用户最多可能有33户。6、解:(1)由题意得:化简得:当0时,10110答:与之间的函数关系式为:;自变量的取值范围是:110的整数。 (2)由题意得:W W与之间的函数关系式为: W随的增大而减小 当2时,W有最大值,最大值为: 315.2(百元) 当2时,16,2 答:为了获得最大利润,应安排2辆车运输A种苹果,16辆车
10、运输B种苹果,2辆车运输C种苹果。7、(1)当x1时,设y=k1x.将(1,5)代入,得k1=5. y=5x. 当x1时,设y=k2x+b.以(1,5),(8,1.5)代入,得, (2)以y=2代入y=5x,得; 以y=2代入,得x2=7. . 故这个有效时间为小8、(1)y1=x-0.55x-0.05x-20 =0.4x-20; y2=x-0.55x-0.1x=0.35x.(2)若y1y2,则0.4x-200.35x,解得x400; 若y1=y2,则0.4x-20=0.35x,解得x=400; 若y1y2,则0.4x-200.35x,解得x400. 故当月生产量大于400件时,选择方案一所获利润较大;当月生产量等于400件时,两种方案利润一样;当月生产量小于400件时,选择方案二所获利润较大.