资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,计 算 声 学,马 俊,吉林大学物理学院声学与微波物理系,第一章,绪 论,在学习了弹性动力学、声学和声测井理论之后,如何数值模拟声场的激发和传播?,如何分析弹性波场的扩散、衰减以及波型的转换?,特别在介质分布失去轴对称时,纯解析方法不适用时用什么方法来数值模拟声场?,这些都是计算声学所要解决的问题,相关的具体算法、处理手段和程序构成计算声学的主要内容。,计算方法分类,根据方法本身的不同主要分四类:,第一 纯解析算法(,DW),,第二 摄动理论近似求解方法,,第三 半解析方法,,第四 纯数值求解方法(,FD)。,具体根据介质类型,可以把每一类方法具体展开:,第一 理想弹性介质,,第二 准(粘)弹性介质,,第三 双相(多相)介质。,具体根据声源类型:,点源(单极和多极),,柱源。,此外,根据为分析波场的传播机制:,第一 计算全波声场,,第二 计算分波声场。,本课程的主要目的,掌握基本的声学类问题的数值模拟程序及有关分析手段的程序,特别是一些基本的通用子程序。,学会如何调试子程序,如何修改和改进主程序,达到能够针对具体问题独立编程的水平。,使学者在上完该课程后的有关声学问题的计算能力得到提高,第二章,纯解析算法-全波场的计算,2.1 单相准弹性介质地层下单极点源激发的井孔声波全波场的计算,本节学习在单相(准)弹性介质流体中点源(单极源)激发与辐射声场的数值模拟方法,-,离散波数法。,一、设声源为定声压源,则流体内点源,声压直达场的计算,均匀流体介质中的全波,FFT 用FALSE,定声压点源流体直达场,在空间,-,频率域的表达式为(,EW),Notice:The“DFL”in X1=DFL*DSQRT(DBLE(N1-1),均匀流体介质中的全波,声源脉冲的频域响应:,FFT,用,FALSE,声源脉冲波列,:,简谐(单色)波的叠加,FFT,用,TRUE,振幅,均匀流体介质中的全波,FFT 用TRUE,定声压点源流体直达场,在空间,-,时间域的表达式(,DW),为,Notice:The“DFP”in X2=DFP*DSQRT(DBLE(N2-1),均匀流体介质中的全波,对理想弹性介质,频率为实频率时:,对粘弹性介质,频率为复频率时:,Fig.01 Waves propagating in water at a center frequency of 10kHz,Comparision,between,EW,and,DW,Z=1.0m,r=0.1m,Vf,=1600m/s,声源脉冲的类型,声源脉冲的类型,PF3,余弦包络,时域函数,1 声源脉冲的类型,PF3,频域函数,SUBROUTINE,PF3,(CPT,FR,FI),IMPLICIT DOUBLE PRECISION(A-B,D-H,O-Z),IMPLICIT DOUBLE COMPLEX(C),COMMON/BLKDAT/TC,P0,P0T,PAI=3.1415926535D0,CI=DCMPLX(0.D0,1.D0),A=P0T+PAI,B=P0T-PAI,CH=.25D0*TC*(CSIW(CPT+P0T)+CSIW(CPT-P0T),&,+.5D0*(CSIW(CPT+A)+CSIW(CPT-A),&,+CSIW(CPT+B)+CSIW(CPT-B),正变换:,CH=CH*CDEXP(CI*CPT),反变换:(,我们使用,),CH=CH*CDEXP(CI*CPT),FR=DREAL(CH),FI=DIMAG(CH),RETURN,END,其中,CSIW,为函数子程序,DOUBLE COMPLEX FUNCTION,CSIW,(CX),IMPLICIT DOUBLE COMPLEX(C),IMPLICIT DOUBLE PRECISION(A-B,D-H,O-Z),X=DREAL(CX),Y=DIMAG(CX),IF(X.EQ.0.D0.AND.Y.EQ.0.D0)GOTO 111,110,CSIW=CDSIN(CX)/CX,GO TO,30,111,CSIW=1.,30,RETURN,END,声源脉冲,PF3,的调用方式,DP=PAI2*DFP ,角频率间隔,P0=PAI2*F20 ,中心角频率,W0=PAI2*F0 ,复频率虚部对应角频率,P0T=PAI*TC*F20,TC,时域脉冲波列长,DPT=.5D0*,DP,*TC,WW0=0.5D0*W0*TC,DO,J=JFL,JFM,PT=J*DPT,对(角)频率的循环,CPT=DCMPLX(PT,-WW0),CALL,PF3,(CPT,FR(J),FI(J),ENDDO,PF3(NT=3)F20=2kHz,NN=3,声源脉冲的类型,PF2,变形瑞克子波,时域函数,2 声源脉冲的类型,PF2,频域函数,SUBROUTINE,PF2,(CP,FR,FI),IMPLICIT DOUBLE COMPLEX(C),IMPLICIT DOUBLE PRECISION(A-B,D-H,O-Z),COMMON/DATA/AA,AA2,W0,PAI=3.1415926535D0,CI=(0.D0,1.D0),CA1=3.D0*(AA-CI*CP)*2-W0*2,CA2=8.d0*AA2*W0*CA1,CA3=(AA-CI*CP)*2+W0*2)*3,CF=CA2/CA3,FR=DREAL(CF),FI=DIMAG(CF),RETURN,END,声源脉冲,PF2,的调用方式,DP,=PAI2*DFP ,角频率间隔,W0=PAI2*F20 ,中心角频率,AA=P0/DSQRT(3),AA2=AA*AA,W01=PAI2*F0 ,复频率虚部对应角频率,DO,J=JFL,JFM,P=J*DP ,对(角)频率循环,CP=DCMPLX(P,-W01),CALL,PF2,(CP,FR(J),FI(J),ENDDO,PF2(NT=2)F20=2kHz,NN=3,快速傅立叶变换子程序,FFT,快速傅立叶变换子程序,SUBROUTINE,COMPFR,(,A,B,N1,M1,INV,),A,变换量实部数组,B,变换量虚部数组,N1,M1,变换量数组元素量及相关量,INV,逻辑变量(.,TRUE.OR.FALSE.),正变换 反变换,A,B,既是输入变量又是输出变量,快速傅立叶变换子程序组成及调用方式,SUBROUTINE,COMPFR(XR,XI,N2,M2,.INV.)SUBROUTINE FFT(A,B,N1,M1,KS)SUBROUTINE REORD(A,B,N1,M1,KS,REEL),CALL COMPFR(XR,XI,N2,M2,.TRUE.),例如:,CALL COMPFR(XR,XI,N2,M2,.FALSE.),例如:,柱函数子程序,I(X)K(X),柱函数子程序,SUBROUTINE,DCBES,(,CZ,N,M,),CZ,自变量(实部,虚部),N,控制变量,N,=1,计算,I,和,K;,N,=,其它值只计算,K,M1,计算贝塞耳函数的阶数,CZ,是输入变量,输出变量通过公用块导出,COMMON/,BLKBES,/,CI(0:5),CII(0:5),CK(0:5),CKK(0:5),一阶导数 一阶导数,柱函数子程序组成及调用方式,SUBROUTINE,DCBES,(,CZ,N,M,),SUBROUTINE,CPAB,在,主程序中,CALL CPAB,之后在任意位置,CALL,DCBES,(,CZ,N,M,),例如:要计算井壁处流体径向虚波数对应的贝塞耳,函数,CZ,=DCSQRT(,CKZ,*,CK,Z-,CKF,*,CKF,)*R,CKZ,轴向波数,,CKF,流体波数,点源流体直达场的计算程序,单极点源在流体中的辐射场,直达场计算程序,SOURCE0,.FOR,主要流程:,计算声源及接收器有关量,为计算贝塞耳函数作准备,CALL CPAB,计算波数,CALL CKRI,计算复频率、离散点间隔(时频、空波),对频率作外循环,对波数作内循环计算波数域的声源辐射场函数,(注意对称性),每次内循环后作,FFT(,波数空间),直达场计算程序,SOURCE0,.FOR,主要流程:,对频率循环完成后即得到频率空间域的声源辐射场函数。并从中取出各接收器处的声场。,作频率时间域,FFT,,并对复频率还原,计算声源激发的瞬态声场,主程序有详细的中文说明,直达场计算程序输入文件,SOURCE0.YY,$,CONS,R=0.1D-09,接收器(场点)的径向坐标,Vf,=1500.D0,流体波速,Qf,=1.d+100,流体品质因素,TC=1.0D-03,PF3,声源脉冲波列长,F10=0.10D+02,要求接收器与声源的最大距离,F20=0.20D+04,声源的中心频率,DFL=0.48828125D-01,线波数间隔,DFP=0.50D+02,离散频率点间隔,ZP=0.1D-06,第一接收器轴向坐标,DZ=0.1D+01,相邻接收器间隔,$,END,直达场计算程序输入文件,SOURCE0.YY,$,DEVP,N1=8193,波数空间数组元素量,N2=8193,频率时间数组元素量,M1=14,与,N1,对应,M2=14,与,N2,对应,NN=3,控制频域计算范围的参数之一,NT=2,声源脉冲的类型选择2,PF2,3-PF3,NW=5,接收器道数5,KEY=1,功能开关。0声源脉冲及频谱计算,1-用公式直接计算空间频率域的场,2-用,FFT,变换由频率波数得出频率空间域的场,$,END,直达场计算程序输入文件,SOURCE0.YY,DFL=1.0/(DDZ*(N-1),DFL=0.48828125D-1;0.244140625D-1,0.1220703125D-1,0.06102515625D-1,N,M=1025 11;2049 12;4097 13;8193 14;16385 15,单极点源辐射场的计算结果,点源在无限流体中激发的声波场,PF2(NT=2)F20=2kHz,NN=3,Vf,=1500m/s,-,EW,-,DW,PF3(NT=3)F20=2kHz,NN=3,Vf,=1500m/s,-,EW,-,DW,单极点源辐射场的计算作业,1、点源脉冲,PF3,的考察,F20=10,15kHz,NN=1,2,3,4,5,TC=0.5ms,1.0ms,2.0ms,2、,点源脉冲,PF2,的考察,F20=5,20kHz,NN=1,2,3,4,5,3、,直达场的计算,任选一种声源脉冲:计算,F20=20kHz,,(1)ZP=1m,dz,=0.5m,(2)ZP=10m,dz,=1m,4、,思考题:如何根据要求适当选取,DFL,DFP?,
展开阅读全文