资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,2-4,拉(压)杆的变形胡克定律,I,拉(压)杆的纵向变形,纵向变形:,l=l,1,-l,d,l,F,F,l,1,d,1,l,F,l,A,2.线弹性,4.计算长度,l,内,F,E,A,为常数,1.拉压胡克定律,3.,E,称为弹性模量,单位与,应力相同,,EA,称为拉压刚度,低碳钢(,Q235):,解:,1)受力分析,例 杆件,ABCD,是用,E,=70GPa,的铝合金制成,,AC,段的横截面面积,A,1,=800mm,2,,,CD,段的横截面面积,A,2,=500mm,2,,,受力如图所示,不计杆件的自重,试求:1),AC,段和整根杆件的变形量,2),B,、,C,截面的相对位移量,3),C,、,D,截面的位移。,50kN,75kN,100kN,1.75m,1.25m,1.50m,A,B,C,D,2)计算变形量,=,2510,3,1.7510,3,800,7010,3,=0.78,+2.79,+,12510,3,1.2510,3,800,7010,3,=3.57,mm (),分段累加,x,F,N,o,50,25,125,(,kN,),1.75m,1.25m,1.50m,50kN,75kN,100kN,A,B,C,D,=,(-100)10,3,1.7510,3,800,7010,3,+,7510,3,3.010,3,800,7010,3,+,5010,3,3.010,3,800,7010,3,=3.57,mm (),叠加法,(,2),75kN,(,3),50kN,(,1),100kN,1.75m,1.25m,1.50m,50kN,75kN,100kN,A,B,C,D,3),B,、,C,截面的相对位移量,BC,=,l,BC,=,12510,3,1.2510,3,800,7010,3,=2.79mm (),=0,+,7510,3,1.2510,3,800,7010,3,+,5010,3,1.2510,3,800,7010,3,=2.79mm (),1.75m,1.25m,1.50m,50kN,75kN,100kN,A,B,C,D,4),C,、,D,截面的位移,C,=,l,AC,=3.57,mm (),D,=,l,AD,说明:,1.小变形,2.变形与位移的区别,1.75m,1.25m,1.50m,50kN,75kN,100kN,A,B,C,D,解:1)求两杆的轴力,x,y,F,N2,F,N1,例 图示杆系,荷载,F,=100kN,求结点,A,的位移,A,。,已知两杆均为长度,l,=2m,,直径,d,=25mm,的圆杆,,,=30,,杆材(钢)的弹性模量,E,=210GPa,。,F,A,B,C,a,a,1,2,a,a,A,F,由胡克定律得两杆的伸长:,F,A,B,C,a,a,1,2,A,B,C,a,a,1,2,A,2,1,A,2,A,1,a,a,A,A,2,1,A,2,A,1,a,a,A,A,l,q,例 图示立柱受均布载荷,q,作用,已知立柱的拉压刚度为,EA,,,试求该立柱的变形量。,例:,1)求轴力,F,N,y,ql,d,y,d,S,d,F,F,l,l,1,d,1,绝对变形,相对变形,长度量纲,线应变,,无量纲,称为,单轴应力状态下的,胡克定律,解:,例 求各段的线应变。,50kN,75kN,100kN,1.75m,1.25m,1.50m,A,B,C,D,II,拉(压)杆的横向变形,-,横向变形因素,或,泊松比,d,F,F,l,l,1,d,1,绝对变形,相对变形,低碳钢(,Q235):,垂直于轴线的横截面内,任意两点之间线段的变形关系均符合横向变形规律。,
展开阅读全文