资源描述
-全国各地备战中考数学分类:平行四边形综合题汇编含答案解析
一、平行四边形
1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH值.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由折叠性质知,,,,则由得到;
(2)由,可得,又由,即可求得长,然后在中,运用勾股定理即可求得长,再过点作于,由角平分线性质,可得,易证得四边形是矩形,继而可求得答案.
【详解】
(1)四边形为矩形,
,,
又 ,
;
(2) ,
,
,
,
在中,,
过点作于,
,,
,
,,
,
、、共线,
,
四边形是矩形,
,
.
【点睛】
此题考察了折叠性质、矩形性质、角平分线性质、等腰三角形判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形对应关系,注意掌握辅助线作法,注意数形结合思想应用.
2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B坐标分别为(4,0),(4,3),动点M,N分别从O,B同步出发.以每秒1个单位速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点坐标为多少(用含x代数式表达);
(2)试求△NPC面积S体现式,并求出面积S最大值及对应x值;
(3)当x为何值时,△NPC是一种等腰三角形?简要阐明理由.
【答案】(1)P点坐标为(x,3﹣x).
(2)S最大值为,此时x=2.
(3)x=,或x=,或x=.
【解析】
试题分析:(1)求P点坐标,也就是求OM和PM长,已知了OM长为x,关键是求出PM长,措施不唯一,①可通过PM∥OC得出对应成比例线段来求;
②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ长和∠ACB正切值求出PQ长,然后根据PM=AB﹣PQ来求出PM长.得出OM和PM长,即可求出P点坐标.
(2)可按(1)②中措施经求出PQ长,而CN长可根据CN=BC﹣BN来求得,因此根据三角形面积计算公式即可得出S,x函数关系式.
(3)本题要分类讨论:
①当CP=CN时,可在直角三角形CPQ中,用CQ长即x和∠ABC余弦值求出CP体现式,然后联立CN体现式即可求出x值;
②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ长,然后根据QN=CN﹣CQ求出QN体现式,根据题设等量条件即可得出x值.
③当CN=PN时,先求出QP和QN长,然后在直角三角形PNQ中,用勾股定理求出PN长,联立CN体现式即可求出x值.
试题解析:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
∴
解得:QP=x,
∴PM=3﹣x,
由题意可知,C(0,3),M(x,0),N(4﹣x,3),
P点坐标为(x,3﹣x).
(2)设△NPC面积为S,在△NPC中,NC=4﹣x,
NC边上高为,其中,0≤x≤4.
∴S=(4﹣x)×x=(﹣x2+4x)
=﹣(x﹣2)2+.
∴S最大值为,此时x=2.
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=.
②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,
∴x=;
③若CN=NP,则CN=4﹣x.
∵PQ=x,NQ=4﹣2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4﹣x)2=(4﹣2x)2+(x)2,
∴x=.
综上所述,x=,或x=,或x=.
考点:二次函数综合题.
3.如图,在等腰中,,点E在AC上且不与点A、C重叠,在外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
请直接写出线段AF,AE数量关系;
将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE数量关系,并证明你结论;
若,,在图基础上将绕点C继续逆时针旋转一周过程中,当平行四边形ABFD为菱形时,直接写出线段AE长度.
【答案】(1)证明见解析;(2)①②或.
【解析】
【分析】
如图中,结论:,只要证明是等腰直角三角形即可;
如图中,结论:,连接EF,DF交BC于K,先证明≌再证明是等腰直角三角形即可;
分两种情形a、如图中,当时,四边形ABFD是菱形、如图中当时,四边形ABFD是菱形分别求解即可.
【详解】
如图中,结论:.
理由:四边形ABFD是平行四边形,
,
,
,
,
,
,
是等腰直角三角形,
.
故答案为.
如图中,结论:.
理由:连接EF,DF交BC于K.
四边形ABFD是平行四边形,
,
,
,,
,
,
,
,
,
,
在和中,
,
≌,
,,
,
是等腰直角三角形,
.
如图中,当时,四边形ABFD是菱形,设AE交CD于H,易知,,,
如图中当时,四边形ABFD是菱形,易知,
综上所述,满足条件AE长为或.
【点睛】
本题考察四边形综合题、全等三角形判定和性质、等腰直角三角形判定和性质、平行四边形性质、勾股定理等知识,解题关键是纯熟掌握全等三角形判定和性质,寻找全等条件是解题难点,属于中考常考题型.
4.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF.
求证:四边形AECF是菱形.
【答案】见解析
【解析】
【分析】
由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形.
【详解】
证明:∵四边形ABCD是菱形
∴AB∥CD,AB=CD,∠ADF=∠CDF,
∵AB=CD,∠ADF=∠CDF,DF=DF
∴△ADF≌△CDF(SAS)
∴AF=CF,
∵AB∥CD,AE∥CF
∴∠ABE=∠CDF,∠AEF=∠CFE
∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD
∴△ABE≌△CDF(AAS)
∴AE=CF,且AE∥CF
∴四边形AECF是平行四边形
又∵AF=CF,
∴四边形AECF是菱形
【点睛】
本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定.
5.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G交AD于F
(1)求证:AF=DE;
(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;
(3)在(2)条件下,连接CG,如图(3),求证:CG=CD.
【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.
【解析】
【分析】
(1)证明△BAF≌△ADE(ASA)即可处理问题.
(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想措施证明AF=DF,即可处理问题.
(3)延长AE,BC交于点P,由(2)知DE=CD,运用直角三角形斜边中线性质,只要证明BC=CP即可.
【详解】
(1)证明:如图1中,
在正方形ABCD中,AB=AD,∠BAD=∠D=90o,
∴∠2+∠3=90°
又∵BF⊥AE,
∴∠AGB=90°
∴∠1+∠2=90°,
∴∠1=∠3
在△BAF与△ADE中,
∠1=∠3 BA=AD ∠BAF=∠D,
∴△BAF≌△ADE(ASA)
∴AF=DE.
(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.
由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD
∴△BAG≌△ADN(AAS)
∴AG=DN,
又DG平分∠EGF,DM⊥GF,DN⊥GE,
∴DM=DN,
∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF
∴△AFG≌△DFM(AAS),
∴AF=DF=DE=AD=CD,
即点E是CD中点.
(3)延长AE,BC交于点P,由(2)知DE=CD,
∠ADE=∠ECP=90°,∠DEA=∠CEP,
∴△ADE≌△PCE(ASA)
∴AE=PE,
又CE∥AB,
∴BC=PC,
在Rt△BGP中,∵BC=PC,
∴CG=BP=BC,
∴CG=CD.
【点睛】
本题属于四边形综合题,考察了正方形性质,全等三角形判定和性质,角平分线性质定理,直角三角形斜边中线性质等知识,解题关键是对寻找全等三角形处理问题,属于中考压轴题.
6.如图,正方形ABCD边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D长为?
【答案】或
【解析】
【分析】
分两种状况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=;
【详解】
如图1,当∠AB′F=90°时,此时A、B′、E三点共线,
∵∠B=90°,∴AE==10,
∵B′E=BE=6,∴AB′=4,
∵B′F=BF,AF+BF=AB=8,
在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,
∴AF=5,BF=3,
过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,
∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,
在Rt△CB′N中,由勾股定理得,B′D= = ;
如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,
过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,
在Rt△CB′N中,由勾股定理得,B′D= = ;
综上,可得B′D长为或.
【点睛】
本题重要考察正方形性质与判定,矩形有性质判定、勾股定理、折叠性质等,能对地画出图形并能分类讨论是解题关键.
7.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD延长线于G.
(1)求证:AE=EG;
(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;
(3)如图3,取GF中点M,若AB=5,求EM长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
【分析】
(1)根据平行线性质和等腰三角形三线合一性质得:∠CAD=∠G,可得AE=EG;
(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC=BC,AD⊥BC,
∴BD=CD,
∴AG是BC垂直平分线,
∴GC=GB,
∴∠GBF=∠BCG,
∵BG=BF,
∴GC=BE,
∵CE=EF,
∴∠CEF=180°﹣2∠F,
∵BG=BF,
∴∠GBF=180°﹣2∠F,
∴∠GBF=∠CEF,
∴∠CEF=∠BCG,
∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,
∴∠GCE=∠F,
在△BEF和△GCE中,
,
∴△BEF≌△GEC(SAS),
∴BE=EG;
(3)如图3,连接DM,取AC中点N,连接DN,
由(1)得AE=EG,
∴∠GAE=∠AGE,
在Rt△ACD中,N为AC中点,
∴DN=AC=AN,∠DAN=∠ADN,
∴∠ADN=∠AGE,
∴DN∥GF,
在Rt△GDF中,M是FG中点,
∴DM=FG=GM,∠GDM=∠AGE,
∴∠GDM=∠DAN,
∴DM∥AE,
∴四边形DMEN是平行四边形,
∴EM=DN=AC,
∵AC=AB=5,
∴EM=.
【点睛】
本题是三角形综合题,重要考察了全等三角形判定与性质,直角三角形斜边中线性质,等腰三角形性质和判定,平行四边形性质和判定等知识,解题关键是作辅助线,并纯熟掌握全等三角形判定措施,尤其是第三问,辅助线作法是关键.
8.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC面积为8,菱形CEFG面积是_______.(只填成果)
【答案】见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,运用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
9.如图1,在正方形ABCD中,点E,F分别是边BC,AB上点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE关系是___;
(2)如图2,若点E,F分别是边CB,BA延长线上点,其他条件不变,(1)中结论与否仍然成立?请作出判断并予以证明;
(3)如图3,若点E,F分别是边BC,AB延长线上点,其他条件不变,(1)中结论与否仍然成立?请直接写出你判断.
【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.
【解析】
试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,运用对应边相等求证四边形GHBF是矩形后,运用等量代换即可求出FG=C,FG∥CE;
(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.
试题解析:解:(1)FG=CE,FG∥CE;
(2)过点G作GH⊥CB延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;
(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.
10.(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN形状,并阐明理由;
(处理问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方值.
【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
【分析】
(1)根据点A在线段BD垂直平分线上,点C在线段BD垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种状况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别根据旋转性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD垂直平分线上,点C在线段BD垂直平分线上,
∴AC垂直平分BD,
故答案为:AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′平方为16+8或16﹣8.
分两种状况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,重要考察了正方形性质,矩形判定,旋转性质,线段垂直平分线性质以及勾股定理综合运用,处理问题关键是作辅助线构造直角三角形,根据勾股定理进行计算求解.解题时注意:有三个角是直角四边形是矩形.
11.小明在矩形纸片上画正三角形,他做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重叠,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上点P处,再折出PB、PC,最终用笔画出△PBC(图1).
(1)求证:图1中 PBC是正三角形:
(2)如图2,小明在矩形纸片HIJK上又画了一种正三角形IMN,其中IJ=6cm,
且HM=JN.
①求证:IH=IJ
②祈求出NJ长;
(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边长度a变化时,在矩形纸片上总能画出最大正三角形,但位置会有所不一样.请根据小明发现,画出不一样情形示意图(作图工具不限,能阐明问题即可),并直接写出对应a取值范围.
【答案】(1)证明见解析;(2)①证明见解析;②12-6(3)3<a<4,a>4
【解析】
分析:(1)由折叠性质和垂直平分线性质得出PB=PC,PB=CB,得出PB=PC=CB即可;
(2)①运用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、QJ=x,根据IJ=IQ+QJ求出x即可得;
(3)由等边三角形性质、直角三角形性质、勾股定理进行计算,画出图形即可.
(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重叠,得到折痕EF
∴PB=PC
∵沿折痕BG折叠纸片,使点C落在EF上点P处
∴PB=BC
∴PB=PC=BC
∴△PBC是正三角形:
(2)证明:①如图
∵矩形AHIJ
∴∠H=∠J=90°
∵△MNJ是等边三角形
∴MI=NI
在Rt△MHI和Rt△JNI中
∴Rt△MHI≌Rt△JNI(HL)
∴HI=IJ
②在线段IJ上取点Q,使IQ=NQ
∵Rt△IHM≌Rt△IJN,
∴∠HIM=∠JIN,
∵∠HIJ=90°、∠MIN=60°,
∴∠HIM=∠JIN=15°,
由QI=QN知∠JIN=∠QNI=15°,
∴∠NQJ=30°,
设NJ=x,则IQ=QN=2x,QJ=x,
∵IJ=6cm,
∴2x+x=6,
∴x=12-6,即NJ=12-6(cm).
(3)分三种状况:
①如图:
设等边三角形边长为b,则0<b≤6,
则tan60°=,
∴a=,
∴0<b≤=;
②如图
当DF与DC重叠时,DF=DE=6,
∴a=sin60°×DE==,
当DE与DA重叠时,a=,
∴<a<;
③如图
∵△DEF是等边三角形
∴∠FDC=30°
∴DF=
∴a>
点睛:本题是四边形综合题目,考察了折叠性质、等边三角形判定与性质、旋转性质、直角三角形性质、正方形性质、全等三角形判定与性质等知识;本题综合性强,难度较大.
12.已知边长为1正方形ABCD中, P是对角线AC上一种动点(与点A、C不重叠),过点P作PE⊥PB ,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F.
(1)当点E落在线段CD上时(如图),
①求证:PB=PE;
②在点P运动过程中,PF长度与否发生变化?若不变,试求出这个不变值,若变化,试阐明理由;
(2)当点E落在线段DC延长线上时,在备用图上画出符合规定大体图形,并判断上述(1)中结论与否仍然成立(只需写出结论,不需要证明);
(3)在点P运动过程中,△PEC能否为等腰三角形?假如能,试求出AP长,假如不能,试阐明理由.
【答案】(1)①证明见解析;②点PP在运动过程中,PF长度不变,值为;(2)画图见解析,成立 ;(3)能,1.
【解析】
分析:(1)①过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;②连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO长即可.
(2)根据条件即可画出符合规定图形,同理可得(1)中结论仍然成立.
(3)可分点E在线段DC上和点E在线段DC延长线上两种状况讨论,通过计算就可求出符合规定AP长.
详解:(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.
∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
∵PE⊥PB即∠BPE=90°,
∴∠BPG=90°﹣∠GPE=∠EPH.
在△PGB和△PHE中,
,
∴△PGB≌△PHE(ASA),
∴PB=PE.
②连接BD,如图2.
∵四边形ABCD是正方形,∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90°﹣∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,
∴BC=OB.
∵BC=1,∴OB=,
∴PF=.
∴点PP在运动过程中,PF长度不变,值为.
(2)当点E落在线段DC延长线上时,符合规定图形如图3所示.
同理可得:PB=PE,PF=.
(3)①若点E在线段DC上,如图1.
∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.
∵∠PBC<90°,∴∠PEC>90°.
若△PEC为等腰三角形,则EP=EC.
∴∠EPC=∠ECP=45°,
∴∠PEC=90°,与∠PEC>90°矛盾,
∴当点E在线段DC上时,△PEC不也许是等腰三角形.
②若点E在线段DC延长线上,如图4.
若△PEC是等腰三角形,
∵∠PCE=135°,
∴CP=CE,
∴∠CPE=∠CEP=22.5°.
∴∠APB=180°﹣90°﹣22.5°=67.5°.
∵∠PRC=90°+∠PBR=90°+∠CER,
∴∠PBR=∠CER=22.5°,
∴∠ABP=67.5°,
∴∠ABP=∠APB.
∴AP=AB=1.
∴AP长为1.
点睛:本题重要考察了正方形性质、等腰三角形性质、全等三角形判定与性质、角平分线性质、勾股定理、四边形内角和定理、三角形内角和定理及外角性质等知识,有一定综合性,而通过添加辅助线证明三角形全等是处理本题关键.
13.在正方形ABCD中,动点E,F分别从D,C两点同步出发,以相似速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF位置关系,并阐明理由;
(2)如图②,当E,F分别移动到边DC,CB延长线上时,连接AE和DF,(1)中结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC延长线上移动时,连接AE,DF,(1)中结论还成立吗?请阐明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F移动,使得点P也随之运动,请你画出点P运动途径草图.若AD=2,试求出线段CP最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形性质得AE=DF,∠DAE=∠CDF,再由等角余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,因此AD=DC,∠ADE=∠DCF=90°,DE=CF,因此△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,因此AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,因此点P途径是一段以AD为直径弧,设AD中点为Q,连接QC交弧于点P,此时CP长度最小,再由勾股定理可得QC长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF.
理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.
在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;
(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P途径是一段以AD为直径弧,
设AD中点为Q,连接QC交弧于点P,此时CP长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
考点:四边形综合知识.
14.如图,既有一张边长为4正方形纸片ABCD,点P为正方形AD边上一点(不与点A、点D重叠),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH周长是定值;
(3)当BE+CF长取最小值时,求AP长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换性质得出∠PBC=∠BPH,进而运用平行线性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,运用折叠性质和勾股定理知识用x表达出BE和CF,结合二次函数性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∠C=∠BQH=90°,BH=BH,
在△BCH和△BQH中,
,
∴△BCH≌△BQH(SAS),
∴CH=QH.
∴△PHD周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
在△EFM和△BPA中,
,
∴△EFM≌△BPA(AAS).
∴EM=AP.
设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+,
∴CF=BE-EM=2+-x,
∴BE+CF=-x+4=(x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.
15.如图1,在菱形ABCD中,ABC=60°,若点E在AB延长线上,EF∥AD,EF=BE,点P是DE中点,连接FP并延长交AD于点G.
(1)过D作DHAB,垂足为H,若DH=,BE=AB,求DG长;
(2)连接CP,求证:CPFP;
(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB延长线上运动,点F在AB延长线上运动,且BE=BF,连接DE,点P为DE中点,连接FP、CP,那么第(2)问结论成立吗?若成立,求出值;若不成立,请阐明理由.
【答案】(1)1;(2)见解析;(3).
【解析】
试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH正弦值得出AD长度,然后得出BE长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC得出EF∥BC,则阐明△BEF为正三角形,从而得出DG长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.
试题解析:(1)解:∵四边形ABCD为菱形 ∴DA∥BC CD="CB" ∠CDG=∠CBA=60° ∴∠DAH=∠ABC=60°
∵DH⊥AB ∴∠DHA=90° 在Rt△ADH中 sin∠DAH=∴AD=
∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE中点 ∴PD=PE
∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC
∴∠FEB=∠CBA=60° ∵BE=EF ∴△BEF为正三角形 ∴EF=BE=1 ∴DG=EF=1
、证明:连接CG、CF
由(1)知 △PDG≌△PEF ∴PG=PF
在△CDG与△CBF中 易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF
∴CG=CF ∵PG=PF ∴CP⊥GF
(3)如图:CP⊥GF仍成立
理由如下:过D作EF平行线,交FP延长于点G
连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC
∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60° ∴∠CDG=∠ADC+∠GDA=120°
∵∠CBF=180°-∠EBF=120° ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF
∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP
∵∠DCP=180-∠ABC=120° ∴∠DCG+∠GCE=120° ∴∠FCE+∠GCE=120° 即∠GCE=120°
∴∠FCP=∠GCE=60° 在Rt△CPF中 tan∠FCP=tan60°==
考点:三角形全等证明与性质.
展开阅读全文