资源描述
2024年中考第三次模拟考试(陕西卷)
数 学
(考试时间:120分钟 试卷满分:120分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、 选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.(2024·交大附中二模考试)下列各数中,为有理数的是( )
A. B. C. D.
2.下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )
A.面① B.面② C.面⑤ D.面⑥
3.将一副三角板按下图所示摆放在一组平行线内,,,则的度数为( )
A. B. C. D.
4.若,则( )
A.5 B.1 C. D.0
5.在平面直角坐标系中,一次函数的图象是( )
A. B. C.D.
6.如图,平行四边形ABCD的对角线,相交于点,的平分线与边相交于点,是中点,若,,则的长为( )
A.1 B.2 C.3 D.4
7.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、为半径的圆弧,N是的中点,.“会圆术”给出的弧长的近似值计算公式:.当,时,则的值为( )
A. B. C. D.
8.已知抛物线的部分图象如图所示,则下列结论中正确的是( )
A. B.
C. D.(为实数)
第Ⅱ卷
二、填空题(本大题共5个小题,每小题3分,共15分)
9.如图,数轴上的点分别对应实数,则__________0.(用“”“”或“”填空)
10.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为___
11.如图,菱形中,,,,垂足分别为,,若,则________.
12.如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D两点,以,为邻边的矩形被坐标轴分割成四个小矩形,面积分别记为,,,,若,则的值为________
13.如图,边长为2的等边的两个顶点分别在两条射线上滑动,若,则的最大值是_________.
三、解答题(本大题共13个小题,共81分.解答应写出文字说明,证明过程或演算步骤)
14.(5分)计算:.
15.(5分)解不等式组.
16.(5分)解方程:.
17.(5分)如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.尺规作图(不写作法,保留作图痕迹),补全图形.
18.(5分)如图,点C在线段上,在和中,.
求证:.
19.(5分)如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上.
(1)将向下平移3个单位长度得到,画出;
(2)将绕点顺时针旋转90度得到,画出;
(3)在(2)的运动过程中请计算出扫过的面积.
20.(5分)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.
(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)
(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.
21.(6分)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向处,南关桥C在城门楼B的正南方向处.在明珠大剧院P测得角楼A在北偏东方向,南关桥C在南偏东方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤的距离(结果精确到).
(参考数据:,,,,,)
22.(7分)为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了,女生跑了,然后男生女生都开始匀速跑步.已知男生的跑步速度为,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时.已知轴表示从开始匀速跑步到停止跑步的时间,轴代表跑过的路程,则:
(1)男女跑步的总路程为_______________.
(2)当男、女相遇时,求此时男、女同学距离终点的距离.
23.(7分)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别
劳动时间
A
B
C
D
E
(1)九年级1班的学生共有___________人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
24.(8分)如图,都是的半径,.
(1)求证:;
(2)若,求的半径.
25.(8分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.
(1)求这个二次函数的表达式;
(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由.
26.(10分)综合与实践
问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:
独立思考:小明:“当点落在上时,.”
小红:“若点为中点,给出与的长,就可求出的长.”
实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:
问题1:在等腰中,由翻折得到.
(1)如图1,当点落在上时,求证:;
(2)如图2,若点为中点,,求的长.
问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.
问题2:如图3,在等腰中,.若,则求的长.
2024年中考第三次模拟考试(陕西卷)
数学·全解全析
第Ⅰ卷
二、 选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.(2024·交大附中二模考试)下列各数中,为有理数的是( )
A. B. C. D.
【答案】A
【分析】根据立方根、无理数与有理数的概念即可得.
【详解】解:A、,是有理数,则此项符合题意;
B、是无限不循环小数,是无理数,则此项不符合题意;
C、是无理数,则此项不符合题意;
D、是无理数,则此项不符合题意;
故选:A.
2.下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )
A.面① B.面② C.面⑤ D.面⑥
【答案】C
【分析】根据底面与多面体的上面是相对面,则形状相等,间隔1个长方形,且没有公共顶点,即可求解.
【详解】解:依题意,多面体的底面是面③,则多面体的上面是面⑤,
故选:C.
3.将一副三角板按下图所示摆放在一组平行线内,,,则的度数为( )
A. B. C. D.
【答案】C
【分析】根据两直线平行内错角相等即可求解.
【详解】解:依题意,,
∵,
∴,
故选:C.
4.若,则( )
A.5 B.1 C. D.0
【答案】A
【分析】把变形后整体代入求值即可.
【详解】∵,
∴
∴,
故选:A.
5.在平面直角坐标系中,一次函数的图象是( )
A. B. C.D.
【答案】D
【分析】依据一次函数的图象经过点和,即可得到一次函数的图象经过一、三、四象限.
【详解】解:一次函数中,令,则;令,则,
∴一次函数的图象经过点和,
∴一次函数的图象经过一、三、四象限,
故选:D.
6.如图,平行四边形ABCD的对角线,相交于点,的平分线与边相交于点,是中点,若,,则的长为( )
A.1 B.2 C.3 D.4
【答案】A
【分析】根据平行四边形的性质、平行线的性质、角平分线的定义以及等腰三角形的判定可得,进而可得,再根据三角形的中位线解答即可.
【详解】解:∵四边形是平行四边形,,
∴,,,
∴,
∵平分,
∴,
∴,
∴,
∴,
∵是中点,
∴;
故选:A.
7.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、为半径的圆弧,N是的中点,.“会圆术”给出的弧长的近似值计算公式:.当,时,则的值为( )
A. B. C. D.
【答案】B
【分析】连接,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.
【详解】连接,根据题意,是以点O为圆心、为半径的圆弧,N是的中点,,
得,
∴点M,N,O三点共线,
∵,,
∴是等边三角形,
∴,
∴
∴.
故选:B.
8.已知抛物线的部分图象如图所示,则下列结论中正确的是( )
A. B. C. D.(为实数)
【答案】C
【分析】根据开口方向,与y轴交于负半轴和对称轴为直线可得,,由此即可判断A;根据对称性可得当时,,当时,,由此即可判断B、C;根据抛物线开口向上,对称轴为直线,可得抛物线的最小值为,由此即可判断D.
【详解】解:∵抛物线开口向上,与y轴交于负半轴,
∴,
∵抛物线对称轴为直线,
∴,
∴,
∴,故A中结论错误,不符合题意;
∵当时,,抛物线对称轴为直线,
∴当时,,
∴,故B中结论错误,不符合题意;
∵当时,,抛物线对称轴为直线,
∴当时,,∴,
又∵,
∴,故C中结论正确,符合题意;
∵抛物线对称轴为直线,且抛物线开口向上,
∴抛物线的最小值为,
∴,
∴,故D中结论错误,不符合题意;
故选C.
第Ⅱ卷
二、填空题(本大题共5个小题,每小题3分,共15分)
9.如图,数轴上的点分别对应实数,则__________0.(用“”“”或“”填空)
【答案】
【分析】根据数轴可得,进而即可求解.
【详解】解:由数轴可得
∴
故答案为:.
10.如图,CG平分正五边形ABCDE的外角∠DCF,并与∠EAB的平分线交于点O,则∠AOG的度数为___
【答案】126°
【分析】欲求∠AOG,可求∠AOC,则需求∠BCO、∠OAB、∠B.因为五边形ABCDE是正五边形,所以∠EAB=∠E=∠BCD=108°.又因为AO平分∠EAB,CG平分∠DCF,所以可求得∠OAB=54°,∠BCG=108°+12∠DCF=144°.
【解答】解:∵任意多边形的外角和等于360°,
∴∠DCF=360°÷5=72°.
∴这个正五边形的每个内角为180°﹣72°=108°.
∴∠B=∠EAB=∠BCD=108°.
又∵AO平分∠EAB,
∴∠OAB=12∠EAB=12×108°=54°.
又∵CG平分∠DCF,
∴∠DCG=12∠DCF=12×72°=36°.
∴∠BCO=∠BCD+∠DCG=108°+36°=144°.
∴∠AOC=360°﹣(∠BAO+∠B+∠BCG)=360°﹣(54°+108°+144°)=54°.
∴∠AOG=180°﹣∠AOC=180°﹣54°=126°.
11.如图,菱形中,,,,垂足分别为,,若,则________.
【答案】
【分析】根据菱形的性质,含直角三角形的性质,及三角函数即可得出结果.
【详解】解:在菱形中,,
,
,
,
,
在中,,
同理,,
,
,
在中,
.
故答案为:.
12.如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D两点,以,为邻边的矩形被坐标轴分割成四个小矩形,面积分别记为,,,,若,则的值为________
【答案】2
【分析】设,则,,,根据坐标求得,,推得,即可求得.
【详解】设,则,,
∵点A在的图象上
则,
同理∵B,D两点在的图象上,
则
故,
又∵,
即,
故,∴,
13.如图,边长为2的等边的两个顶点分别在两条射线上滑动,若,则的最大值是_________.
【答案】
【分析】如图所示,取的中点D,连接,先根据等边三角形的性质和勾股定理求出,再根据直角三角形的性质得到,再由可得当三点共线时,有最大值,最大值为.
【详解】解:如图所示,取的中点D,连接,
∵是边长为2的等边三角形,
∴,∴,
∴,
∵,即,
∴,
∵,
∴当三点共线时,有最大值,最大值为,
故答案为:.
三、解答题(本大题共13个小题,共81分.解答应写出文字说明,证明过程或演算步骤)
14.(5分)计算:.
【答案】
【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.
【详解】解:原式,
,
.
15.(5分)解不等式组
【答案】
【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.
【详解】解:,
解不等式①得:,
解不等式②得:,
则不等式组的解集为.
16.(5分)解方程:.
【答案】
【分析】去分母化为整式方程,求出方程的根并检验即可得出答案.
【详解】解:原方程可化为.
方程两边同乘,得.
解得.
检验:当时,.
∴原方程的解是.
17.(5分)如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.
尺规作图(不写作法,保留作图痕迹),补全图形;
【答案】见解析;
【分析】根据已知圆心和半径作圆、作已知角的平分线、过直线外一点作已知直线的垂线的尺规作图的步骤作图即可;
【详解】解:(1)如下图,补全图形:
18.(5分)如图,点C在线段上,在和中,.
求证:.
【答案】证明见解析
【分析】直接利用证明,再根据全等三角形的性质即可证明.
【详解】解:在和中,
∴
∴.
19.(5分)如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上.
(1)将向下平移3个单位长度得到,画出;
(2)将绕点顺时针旋转90度得到,画出;
(3)在(2)的运动过程中请计算出扫过的面积.
【答案】(1)见解析
(2)见解析
(3)
【分析】(1)先作出点A、B、C平移后的对应点,、,然后顺次连接即可;
(2)先作出点A、B绕点顺时针旋转90度的对应点,,然后顺次连接即可;
(3)证明为等腰直角三角形,求出,,根据旋转过程中扫过的面积等于的面积加扇形的面积即可得出答案.
【详解】(1)解:作出点A、B、C平移后的对应点,、,顺次连接,则即为所求,如图所示:
(2)解:作出点A、B绕点顺时针旋转90度的对应点,,顺次连接,则即为所求,如图所示:
(3)解:∵,,,
∴,
∵,
∴,
∴为等腰直角三角形,
∴,
根据旋转可知,,
∴,
∴在旋转过程中扫过的面积为.
20.(5分)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.
(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)
(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.
【答案】(1)随机
(2)
【分析】(1)由确定事件与随机事件的概念可得答案;
(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.
【详解】(1)解:“甲、乙同学都被选为宣传员”是随机事件;
(2)画树状图为:
共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,
所以选中的两名同学恰好是甲,丁的概率.
21.(6分)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向处,南关桥C在城门楼B的正南方向处.在明珠大剧院P测得角楼A在北偏东方向,南关桥C在南偏东方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤的距离(结果精确到).
(参考数据:,,,,,)
【答案】明珠大剧院到龙堤的距离为.
【分析】如图,首先证明四边形是矩形,可得,,然后解直角三角形求出,,进而得出关于的方程,求出即可解决问题.
【详解】解:如图,由题意得,,,,,,,
∵,
∴四边形是矩形,
∴,,
∵,
∴,即,
∵,
∴,即,
∵,,
∴,
解得:,
∴,
答:明珠大剧院到龙堤的距离为.
22.(7分)为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了,女生跑了,然后男生女生都开始匀速跑步.已知男生的跑步速度为,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时.已知轴表示从开始匀速跑步到停止跑步的时间,轴代表跑过的路程,则:
(1)男女跑步的总路程为_______________.
(2)当男、女相遇时,求此时男、女同学距离终点的距离.
【答案】(1);(2)
【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以,即可求解
(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:,求得女生的速度,进而得出解析式为, 联立求得,进而即可求解.
【详解】(1)解:∵开始时男生跑了,男生的跑步速度为,从开始匀速跑步到停止跑步共用时.
∴男生跑步的路程为,
∴男女跑步的总路程为,
故答案为:.
(2)解:男生从开始匀速跑步到停止跑步的直线解析式为:,
设女生从开始匀速跑步到停止跑步的直线解析式为:,
依题意,女生匀速跑了,用了,则速度为,
∴,
联立,解得:.
将代入,解得:,
∴此时男、女同学距离终点的距离为.
23.(7分)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别
劳动时间
A
B
C
D
E
(1)九年级1班的学生共有___________人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
【答案】(1)50,条形统计图见解析
(2)人
【分析】(1)利用C类人数除以对应的百分比即可得到九年级1班的总人数,再分别求出B和D的人数,补全统计图即可;
(2)用九年级学生总人数乘以九年级1班周末在家劳动时间在3小时及以上的学生占的比值即可得到答案;
【详解】(1)解:由题意得到,(人),
故答案为:50
类别B的人数为(人),类别D的人数为(人),
补全条形统计图如下:
(2)由题意得,(人),
即估计周末在家劳动时间在3小时及以上的学生人数为人;
24.(8分)如图,都是的半径,.
(1)求证:;
(2)若,求的半径.
【答案】(1)见解析
(2)
【分析】(1)由圆周角定理得出,,再根据,即可得出结论;
(2)过点作半径于点,根据垂径定理得出,证明,得出,在中根据勾股定理得出,在中,根据勾股定理得出,求出即可.
【详解】(1)证明:∵,
∴,
∵,
∴,
,
.
(2)解:过点作半径于点,则,
,
∴,
,
,
,
在中,
,
在中,,
,
,即的半径是.
25.(8分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.
(1)求这个二次函数的表达式;
(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;
【答案】(1);(2)或或;
【分析】(1)待定系数法求解析式即可求解;
(2)根据,可得到的距离等于到的距离,进而作出两条的平行线,求得解析式,联立抛物线即可求解;
【详解】(1)解:将点,代入,得
解得:
∴抛物线解析式为;
(2)∵,
顶点坐标为,
当时,
解得:
∴,则
∵,则
∴是等腰直角三角形,
∵
∴到的距离等于到的距离,
∵,,设直线的解析式为
∴
解得:
∴直线的解析式为,
如图所示,过点作的平行线,交抛物线于点,
设的解析式为,将点代入得,
解得:
∴直线的解析式为,
解得:或
∴,
∵
∴
∴是等腰直角三角形,且,
如图所示,延长至,使得,过点作的平行线,交轴于点,则,则符合题意的点在直线上,
∵是等腰直角三角形,
∴
∴是等腰直角三角形,
∴
∴
设直线的解析式为
∴
解得:
∴直线的解析式为
联立
解得:或
∴或
综上所述,或或;
26.(10分)综合与实践
问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:
独立思考:小明:“当点落在上时,.”
小红:“若点为中点,给出与的长,就可求出的长.”
实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:
问题1:在等腰中,由翻折得到.
(1)如图1,当点落在上时,求证:;
(2)如图2,若点为中点,,求的长.
问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.
问题2:如图3,在等腰中,.若,则求的长.
【答案】(1)见解析;(2);问题2:
【分析】(1)根据等边对等角可得,根据折叠以及三角形内角和定理,可得,根据邻补角互补可得,即可得证;
(2)连接,交于点,则是的中位线,勾股定理求得,根据即可求解;
问题2:连接,过点作于点,过点作于点,根据已知条件可得,则四边形是矩形,勾股定理求得,根据三线合一得出,根据勾股定理求得的长,即可求解.
【详解】(1)∵等腰中,由翻折得到
∴,,
∵,
∴;
(2)如图所示,连接,交于点,
∵折叠,
∴,,,,
∵是的中点,
∴,
∴,
在中,,
在中,,
∴;
问题2:如图所示,连接,过点作于点,过点作于点,
∵,
∴,,
∵,
∴,
∴,
∴,
又,
∴四边形是矩形,
则,
在中,,,,
∴,
在中,,
∴,
在中,.
展开阅读全文