1、高中物理模型汇总大全模型组合讲解爆炸反冲模型 模型概述“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。模型讲解例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m,当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式知,在动量大小相同的情况下,物体的动能和质量成反
2、比,炮弹的动能,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:,所以。思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为m的炮弹沿着与水平面成角发射出去,炮弹对地速度为,求炮车后退的速度。提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为,设炮车后退方向为正方向,则评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。模型要点内力远大于外力,故系统动量守恒,有其他形式的能单向转化为动能。所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化
3、而来。误区点拨忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。模型演练( 物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M,炮弹的质量为m;发射炮弹时,炸药提供给炮身和炮弹的总机械能E0是不变的。若要使刚发射后炮弹的动能等于E0,即炸药提供的能量全部变为炮弹的动能,则在发射前炮车应怎样运动?答案:若在发射前给炮车一适当的初速度v0,就可实现题述的要求。在这种情况下,用v表示发射后炮弹的速度,V表示发射后炮车的速度,由动量守恒可知:由能量关系可知:按题述的要求应有由以上各式得:模型组合讲解磁偏转模型金燕峰模型概述带电粒子在垂直进入磁
4、场做匀速圆周运动。但从近年的高考来看,带电粒子垂直进入有界磁场中发生偏转更多,其中运动的空间还可以是组合形式的,如匀强磁场与真空组合、匀强磁场、匀强电场组合等,这样就引发出临界问题、数学等诸多综合性问题。模型讲解例. ( 物理高考科研测试)一质点在一平面内运动,其轨迹如图1所示。它从A点出发,以恒定速率经时间t到B点,图中x轴上方的轨迹都是半径为R的半圆,下方的都是半径为r的半圆。(1)求此质点由A到B沿x轴运动的平均速度。(2)如果此质点带正电,且以上运动是在一恒定(不随时间而变)的磁场中发生的,试尽可能详细地论述此磁场的分布情况。不考虑重力的影响。图1解析:(1)由A到B,若上、下各走了N
5、个半圆,则其位移其所经历的时间所以沿x方向的平均速度为(2)I. 根据运动轨迹和速度方向,可确定加速度(向心加速度),从而确定受力的方向,再根据质点带正电和运动方向,按洛伦兹力的知识可断定磁场的方向必是垂直于纸面向外。II. x轴以上和以下轨迹都是半圆,可知两边的磁场皆为匀强磁场。III. x轴以上和以下轨迹半圆的半径不同,用B上和B下分别表示上、下的磁感应强度,用m、q和v分别表示带电质点的质量、电量和速度的大小;则由洛伦兹力和牛顿定律可知,由此可得,即下面磁感应强度是上面的倍。模型要点从圆的完整性来看:完整的圆周运动和一段圆弧运动,即不完整的圆周运动。无论何种问题,其重点均在圆心、半径的确
6、定上,而绝大多数的问题不是一个循环就能够得出结果的,需要有一个从定性到定量的过程。回旋模型三步解题法:画轨迹:已知轨迹上的两点位置及其中一点的速度方向;已知轨迹上的一点位置及其速度方向和另外一条速度方向线。找联系:速度与轨道半径相联系:往往构成一个直角三角形,可用几何知识(勾股定理或用三角函数)已知角度与圆心角相联系:常用的结论是“一个角两边分别与另一个角的两个边垂直,两角相等或互余”;时间与周期相联系:;利用带电粒子只受洛伦兹力时遵循的半径及周期公式联系。误区点拨洛伦兹力永远与速度垂直、不做功;重力、电场力做功与路径无关,只由初末位置决定,当重力、电场力做功不为零时,粒子动能变化。因而洛伦兹
7、力也随速率的变化而变化,洛伦兹力的变化导致了所受合外力变化,从而引起加速度变化,使粒子做变加速运动。模型演练( 浙江省杭州学军中学模拟测试)如图2所示,一束波长为的强光射在金属板P的A处发生了光电效应,能从A处向各个方向逸出不同速率的光电子。金属板P的左侧有垂直纸面向里的匀强磁场,磁感强度为B,面积足够大,在A点上方L处有一涂荧光材料的金属条Q,并与P垂直。现光束射到A处,金属条Q受到光电子的冲击而发出荧光的部分集中在CD间,且CD=L,光电子质量为m,电量为e,光速为c,(1)金属板P逸出光电子后带什么电?(2)计算P板金属发生光电效应的逸出功W。(3)从D点飞出的光电子中,在磁场中飞行的最
8、短时间是多少?图2解析:(1)由电荷守恒定律得知P带正电。(2)所有光电子中半径最大值,所以逸出功(3)以最大半径运动并经D点的电子转过圆心角最小,运动时间最短且,所以。模型组合讲解带电粒子在电场中的运动模型徐征田模型概述带电粒子在电场中的运动也是每年高考中的热点问题,具体来讲有电场对带电粒子的加速(减速),涉及内容有力、能、电、图象等各部分知识,主要考查学生的综合能力。模型讲解例. 在与x轴平行的匀强电场中,一带电量为、质量为的物体在光滑水平面上沿着x轴做直线运动,其位移与时间的关系是,式中x以米为单位,t的单位为秒。从开始运动到5s末物体所经过的路程为_m,克服电场力所做的功为_J。解析:
9、由位移的关系式可知。,所以,即物体沿x轴方向做匀减速直线运动设从开始运动到速度为零的时间为,则故,第5s内物体开始反向以的加速度做匀加速直线运动因此开始5s内的路程为,5s末的速度克服电场力做功点评:解答本题的关键是从位移与时间的关系式中找出物体的初速度和加速度,分析出物体运动4s速度减为零并反向运动,弄清位移与路程的联系和区别。模型要点力和运动的关系牛顿第二定律根据带电粒子受到的力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等物理量。这条思路通常适用于受恒力作用下的匀变速曲线运动。功和能的关系动能定理根据力对带电粒子所做的功W及动能定理,从带电粒子运动的全过程中能的转化
10、角度,研究带电粒子的速度变化、经历的位移等,这条思路通常适用于非均匀或均匀变化的磁场,特别适用于非均匀变化的磁场。在讨论带电粒子的加速偏转时,对于基本粒子,如电子、质子、中子等,没有特殊说明,其重力一般不计;带电粒子如液滴、尘埃、颗粒等没有特殊说明,其重力一般不能忽略。误区点拨一般情况下带电粒子所受的电场力远大于重力,所以可以认为只有电场力做功。由动能定理,此式与电场是否匀强无关,与带电粒子的运动性质、轨迹形状也无关。模型演练如图1所示,A、B两块金属板水平放置,相距,两板间加有一周期性变化的电压,当B板接地时,A板电势随时间t变化的情况如图2所示。在两板间的电场中,将一带负电的粒子从B板中央
11、处由静止释放,若该带电粒子受到的电场力为重力的两倍,要使该粒子能够达到A板,交变电压的周期至少为多大。(g取)图1 图2解析:设电场力为F,则,得前半周期上升高度:,后半周期先减速上升,后加速下降,其加速度:得减速时间为则,此段时间内上升高度:则上升的总高度:后半周期的时间内,粒子向下加速运动,下降的高度:上述计算说明,在一个周期内上升,再回落,且具有向下的速度。如果周期小,粒子不能到达A板。设周期为T,上升的高度则:,。模型组合讲解弹簧模型(动力学问题)李涛模型概述弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能
12、力的热点模型。模型讲解一. 正确理解弹簧的弹力例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:中弹簧的左端固定在墙上。中弹簧的左端受大小也为F的拉力作用。中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有( ) 图1A. B. C. D. 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,
13、由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。二. 双弹簧系统例2. ( 苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg的
14、滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N(取)图2(1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。(2)当汽车以怎样的加速度运动时,传感器a的示数为零。解析:(1),a1的方向向右或向前。(2)根据题意可知,当左侧弹簧弹力时,右侧弹簧的弹力代入数据得,方向向左或向后模型要点弹簧中的力学问题主要是围绕胡克定律进行的,弹力的大小为变力,因此它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关
15、系,往往有临界值,我们在处理变速问题时要注意分析物体的动态过程,为了快捷分析,我们可以采用极限方法,但要注意“弹簧可拉可压”的特点而忽略中间突变过程,我们也可以利用弹簧模型的对称性。模型演练( 成都考题)如图3所示,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。现对球施加一个方向向右的外力F,吏球缓慢偏移。若外力F方向始终水平,移动中弹簧与竖直方向的夹角且弹簧的伸长量不超过弹性限度,则下面给出弹簧伸长量x与的函数关系图象中,最接近的是( )图3答案:D模型组合讲解弹簧模型(功能问题)邹录乃模型概述弹力做功对应的弹簧势能,分子力做功所对应的分子势能、电场力做功对应的电势能、重力做功
16、对应的重力势能有区别,但也有相似。例:( 江苏高考)如图1所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直,磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。(1)求初始时刻导体棒受到的安培力。(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹力势能为,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,
17、电阻R上产生的焦耳热Q为多少?图1解析:(1)初始时刻棒中感应电动势,棒中感应电流,作用于棒上的安培力,联立解得,安培力方向:水平向左;(2)由功和能的关系,得安培力做功,电阻R上产生的焦耳热;(3)由能量转化平衡条件等,可判断:棒最终静止于初始位置。模型要点在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系或能量转化和守恒定律求解,图象中的“面积”功也是我们要熟悉掌握的内容。弹力做功的特点:弹力的功等于弹性势能增量的负值。弹性势能的公式,高考不作定理要求,可作定性讨论。因此,在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求
18、解。分子力、电场力、重力做正功,对应的势能都减少,反之增加。都具有相对性系统性。弹簧一端连联物、另一端固定:当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻。若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。用来计算,此时有两个方案:一是严格带符号运算,q和均考虑正和负,所得W的正、负直接表明电场力做功的正、负;二是只取绝对值进行计算,所得W只是功的数值,至于做正功还是负功?可用力学知识判定。做功与移动的路径无关,仅与始末位置
19、的电势差有关。误区点拨电场力、重力做功与路径无关,取决与始末位置;而弹力、分子力与距离(形变量、分子间距)有关,所以它们的做功与对应的势能问题就可以进行归纳类比。由功的定义式来计算,要求式中F为恒力才行,所以,这个方法有局限性,如在匀强电场中使用。模型演练( 江苏联考)利用传感器和计算机可以测量快速变化力的瞬时值。如图2是用这种方法获得的弹性绳中拉力F随时间t变化的图线。实验时,把小球举高到绳子的悬点O处,然后放手让小球自由下落。由此图线所提供的信息,以下判断正确的是( )图2A. t2时刻小球速度最大;B. t1t2期间小球速度先增大后减小;C. t3时刻小球动能最小;D. t1与t4时刻小
20、球动量一定相同答案:B模型组合讲解等效场模型蔡才福模型概述复合场是高中物理中的热点问题,常见的有重力场与电场、重力场与磁场、重力场与电磁场等等,对复合场问题的处理过程其实就是一种物理思维方法。所以在复习时我们也将此作为一种模型讲解。模型讲解例1. 粗细均匀的U形管内装有某种液体,开始静止在水平面上,如图1所示,已知:L=10cm,当此U形管以4m/s2的加速度水平向右运动时,求两竖直管内液面的高度差。()图1解析:当U形管向右加速运动时,可把液体当做放在等效重力场中,的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与方向垂直。设的方向与g的方向之间夹角为,则由图可知
21、液面与水平方向的夹角为,所以,例2. 如图2所示,一条长为L的细线上端固定,下端拴一个质量为m的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角时,小球处于平衡状态。图2(1)若使细线的偏角由增大到,然后将小球由静止释放。则应为多大,才能使细线到达竖直位置时小球的速度刚好为零?(2)若角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间?解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两个力合成,并称合力为“等效重力”,“等效重力”的大小为:,令这里的可称为“等效重力加速度”,方向与竖直方向成角,如图3所示。这样一个“等效
22、重力场”可代替原来的重力场和静电场。图3(1)在“等效重力场”中,观察者认为从A点由静止开始摆至B点的速度为零。根据重力场中单摆摆动的特点,可知。(2)若角很小,则在等效重力场中,单摆的摆动周期为,从AB的时间为单摆做简谐运动的半周期。即。思考:若将小球向左上方提起,使摆线呈水平状态,然后由静止释放,则小球下摆过程中在哪一点的速率最大?最大速率为多大?它摆向右侧时最大偏角为多大?点评:本题由于引入了“等效重力场”的概念,就把重力场和电场两个场相复合的问题简化为只有一个场的问题。从而将重力场中的相关规律有效地迁移过来。值得指出的是,由于重力场和电场都是匀强场,即电荷在空间各处受到的重力及电场力都
23、是恒力,所以,上述等效是允许且具有意义的,如果电场不是匀强电场或换成匀强磁场,则不能进行如上的等效变换,这也是应该引起注意的。巩固小结:通过以上例题的分析,带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为:确定研究对象;进行受力分析(注意重力是否能忽略);根据粒子的运动情况,运用牛顿运动定律、动能定理或能量关系、动量定理与动量守恒定律列出方程式求解。模型要点物体仅在重力场中运动是最简单,也是学生最为熟悉的运动类型,但是物体在复合场中的运动又是我们在综合性试题中经常遇到的问题,如果我们能化“复合场”为“重力场”,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。如何实现这一
24、思想方法呢?如物体在恒力场中,我们可以先求出合力F,在根据求出等效场的加速度。将物体的运动转化为落体、抛体或圆周运动等,然后根据物体的运动情景采用对应的规律。误区点拨在应用公式时要注意g与的区别;对于竖直面内的圆周运动模型,则要从受力情形出发,分清“地理最高点”和“物理最高点”,弄清有几个场力;竖直面内若作匀速圆周运动,则必须根据作匀速圆周运动的条件,找出隐含条件;同时还要注意线轨类问题的约束条件。模型演练质量为m,电量为+q的小球以初速度以与水平方向成角射出,如图4所示,如果在某方向加上一定大小的匀强电场后,能保证小球仍沿方向做直线运动,试求所加匀强电场的最小值,加了这个电场后,经多长时间速
25、度变为零?图4答案:由题知小球在重力和电场力作用下沿方向做直线运动,可知垂直方向上合外力为零,或者用力的分解或力的合成方法,重力与电场力的合力沿所在直线。建如图5所示坐标系,设场强E与成角,则受力如图:图5由牛顿第二定律可得:0由式得:由式得:时,E最小为其方向与垂直斜向上,将代入式可得即在场强最小时,小球沿做加速度为的匀减速直线运动,设运动时间为t时速度为0,则:,可得:模型组合讲解电磁场中的单杆模型秋飏模型概述在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
26、模型讲解一、单杆在磁场中匀速运动例1. ( 河南省实验中学预测题)如图1所示,电压表与电流表的量程分别为010V和03A,电表均为理想电表。导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。图1(1)当变阻器R接入电路的阻值调到30,且用40N的水平拉力向右拉ab棒并使之达到稳定速度时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度是多少?(2)当变阻器R接入电路的阻值调到,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?解析:(1)假设电流表指针满偏,即I3A,那么此时电压表的示数为
27、U15V,电压表示数超过了量程,不能正常使用,不合题意。因此,应该是电压表正好达到满偏。当电压表满偏时,即U110V,此时电流表示数为设a、b棒稳定时的速度为,产生的感应电动势为E1,则E1BLv1,且E1I1(R1R并)20Va、b棒受到的安培力为F1BIL40N解得(2)利用假设法可以判断,此时电流表恰好满偏,即I23A,此时电压表的示数为6V可以安全使用,符合题意。由FBIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以。二、单杠在磁场中匀变速运动例2. ( 南京市金陵中学质量检测)如图2甲所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L0.50m。
28、一根质量为m0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab棒的电阻为R0.10,其他各部分电阻均不计。开始时,磁感应强度。图2(1)若保持磁感应强度的大小不变,从t0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动。此拉力F的大小随时间t变化关系如图2乙所示。求匀加速运动的加速度及ab棒与导轨间的滑动摩擦力。(2)若从t0开始,使磁感应强度的大小从B0开始使其以0.20T/s的变化率均匀增加。求经过多长时间ab棒开始滑动?此时通过ab棒的电流大小和方向如何?(ab棒与导轨间的最大
29、静摩擦力和滑动摩擦力相等)解析:(1)当t0时,当t2s时,F28N联立以上式得:(2)当时,为导体棒刚滑动的临界条件,则有:则三、单杆在磁场中变速运动例3. ( 上海高考)如图3所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成37角,下端连接阻值为R的电阻。匀速磁场方向与导轨平面垂直。质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。图3(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R,金属棒中的电流方向
30、由a到b,求磁感应强度的大小与方向。(g10m/s2,0.6,cos370.8)解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律 由式解得 (2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡: 此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率 由、两式解得: (3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B 由、两式解得 磁场方向垂直导轨平面向上。四、变杆问题例4. ( 肇庆市模拟)如图4所示,边长为L2m的正方形导线框ABCD和一金属棒MN由粗细相同的同种材料制成,每米长电阻为R01/m,以导线框两条对角线交点O为圆心,半径r0
31、.5m的匀强磁场区域的磁感应强度为B0.5T,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN与导线框接触良好且与对角线AC平行放置于导线框上。若棒以v4m/s的速度沿垂直于AC方向向右匀速运动,当运动至AC位置时,求(计算结果保留二位有效数字):图4(1)棒MN上通过的电流强度大小和方向;(2)棒MN所受安培力的大小和方向。解析:(1)棒MN运动至AC位置时,棒上感应电动势为线路总电阻。MN棒上的电流将数值代入上述式子可得:I0.41A,电流方向:NM(2)棒MN所受的安培力:方向垂直AC向左。说明:要特别注意公式EBLv中的L为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。模
32、型要点(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化导体棒产生感应电动势感应电流导体棒受安培力合外力变化加速度变化速度变化感应电动势变化,循环结束时加速度等于零,导体棒达到稳定运动状态。(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)利用或求感应电动势的大小利用右手定则或楞次定律判断电流方向分析电路结构画等效电路图。(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。误区点拨正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间
33、距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。模型演练1. ( 大联考)如图5所示,足够长金属导轨MN和PQ与R相连,平行地放在水平桌面上。质量为m的金属杆ab可以无摩擦地沿导轨运动。导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面。现给金属杆ab一个瞬时冲量I0,使ab杆向右滑行。图5(1)回路最大电流是多少?(2)当滑行过程中电阻上产生的热量为Q时,杆ab的加速度多大?(3)杆ab从开
34、始运动到停下共滑行了多少距离?答案:(1)由动量定理得由题可知金属杆作减速运动,刚开始有最大速度时有最大,所以回路最大电流:(2)设此时杆的速度为v,由动能定理有:而Q解之 由牛顿第二定律及闭合电路欧姆定律得(3)对全过程应用动量定理有:而所以有又其中x为杆滑行的距离所以有。2. ( 南通调研)如图6所示,光滑平行的水平金属导轨MNPQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B。一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0。现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离
35、开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)。求:图6(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab棒在磁场中可能的运动情况。解析:(1)ab棒离开磁场右边界前做匀速运动,速度为vm,则有:对ab棒0,解得(2)由能量守恒可得:解得:(3)设棒刚进入磁场时速度为v由:棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论:若(或),则棒做匀速直线运动;若(或),则棒先加速后匀速;若(或),则棒先减速后匀速。模型组合讲解电磁流量计模型张慧琨模型概述带电粒子在电磁场中运动时受到电场力、洛伦兹力有时还
36、有考虑重力的作用,发生偏转或做直线运动,处理方法有很多共同的特点,同时在高考中也连年不断,实际应用有电磁流量计、磁流体发电机、霍尔效应等,所以我们特设模型为“电磁流量计”模型。模型讲解例1. 图1是电磁流量计的示意图,在非磁性材料做成的圆管道外加一匀强磁场区域,当管中的导电液体流过此磁场区域时,测出管壁上的ab两点间的电动势,就可以知道管中液体的流量Q单位时间内流过液体的体积()。已知管的直径为D,磁感应强度为B,试推出Q与的关系表达式。图1解析:a,b两点的电势差是由于带电粒子受到洛伦兹力在管壁的上下两侧堆积电荷产生的。到一定程度后上下两侧堆积的电荷不再增多,a,b两点的电势差达到稳定值,此
37、时,洛伦兹力和电场力平衡:,圆管的横截面积故流量。评点:该题是带电粒子在复合场中的运动,但原先只有磁场,电场是自行形成的,在分析其他问题时,要注意这类情况的出现。联系宏观量I和微观量的电流表达式是一个很有用的公式。例2. 磁流体发电是一种新型发电方式,图2和图3是其工作原理示意图。图2中的长方体是发电导管,其中空部分的长、高、宽分别为,前后两个侧面是绝缘体,下下两个侧面是电阻可略的导体电极,这两个电极与负载电阻相连。整个发电导管处于图3中磁场线圈产生的匀强磁场里,磁感应强度为B,方向如图所示。发电导管内有电阻率为的高温、高速电离气体沿导管向右流动,并通过专用管道导出。由于运动的电离气体受到磁场
38、作用,产生了电动势。发电导管内电离气体流速随磁场有无而不同。设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为,电离气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差维持恒定,求: 图2 图3(1)不存在磁场时电离气体所受的摩擦阻力F多大;(2)磁流体发电机的电动势E的大小;(3)磁流体发电机发电导管的输入功率P。解析:(1)不存在磁场时,由力的平衡得。(2)设磁场存在时的气体流速为v,则磁流体发电机的电动势回路中的电流电流I受到的安培力设为存在磁场时的摩擦阻力,依题意,存在磁场时,由力的平衡得根据上述各式解得(3)磁流体发电机发电导管的输入功率由能量守恒定律得故:模型特
39、征“电磁流量计”模型设计到两种情况:一种是粒子处于直线运动状态;另一种是曲线运动状态。处于直线运动线索:合外力为0,粒子将做匀速直线运动或静止:当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动。处于曲线运动状态线索:当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动;当带电粒子所受的合外力的大小、方向均是不断变化的,则粒子将做变加速运动,这类问题一般只能用能量关系处理。所以分析带电粒子在电场、磁场中运动,主要是两条思路:(1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。(2)功能关系。根据场力及其他外力对带电粒子做功引起的能量变化或全
40、过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。模型诠释速度选择器:路径不发生偏转的离子的条件是,即,能通过速度选择器的带电粒子必是速度为该值的粒子,与它带多少电和电性、质量均无关。图4磁流体发电机(霍尔效应):如图5所示的是磁流体发电机原理图,其原理是:等离子气体喷入磁场,正、负离子在洛伦兹力作用下发生上下偏转而聚集到两极板上,在两极板上产生电势差。设A、B平行金属板的面积为S,相距L,等离子气体的电阻率为,喷入气体速度为v,板间磁场的磁感应强度为B,板外电阻为R,当等离子气体匀速通过A、B板间时,A、B板上聚集的电荷最
41、多,板间电势差最大,即为电源电动势。此时离子受力平衡:,电动势。图5电磁流量计:(略见例题)误区点拨处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力。在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单。若是直接看不出是否要考虑重力,根据题目的隐含条件来判断。但在进行受力分析与运动分析时,要由分析结果,先进行定性确定再决定是否要考虑重力。电场力可以对电荷做功,能改变电荷的功能;洛伦兹力不能对电荷做功,不能改变电
42、荷的动能。模型演练( 海淀区期末练习)如图6甲所示,一带电粒子以水平初速度()先后进入方向互相垂直的匀强电场和匀强磁场区域,已知电场方向竖直向下,两个区域的宽度相同且紧邻在一起。在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为;若把电场和磁场正交重叠,如图6乙所示,粒子仍以初速度穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为。比较和,有( )A. 一定是B. 一定是C. 一定是D. 可能是,也可能是图6答案:A。模型组合讲解电路的动态变化模型崔淑芳 汤宝柱模型概述“电路的动态变化”模型指电路中的局部电路变化时引起的电流或电压的变
43、化,变化起因有变阻器、电键的闭合与断开、变压器变匝数等。不管哪种变化,判断的思路是固定的,这种判断的固定思路就是一种模型。模型讲解一、直流电路的动态变化1. 直流电路的动态变化引起的电表读数变化问题例1. 如图1所示电路中,当滑动变阻器的滑片P向左移动时,各表(各电表内阻对电路的影响均不考虑)的示数如何变化?为什么?图1解析:这是一个由局部变化而影响整体的闭合电路欧姆定律应用的动态分析问题。对于这类问题,可遵循以下步骤:先弄清楚外电路的串、并联关系,分析外电路总电阻怎样变化;由确定闭合电路的电流强度如何变化;再由确定路端电压的变化情况;最后用部分电路的欧姆定律及分流、分压原理讨论各部分电阻的电
44、流、电压变化情况。当滑片P向左滑动,减小,即减小,根据判断总电流增大,A1示数增大;路端电压的判断由内而外,根据知路端电压减小,V示数减小;对R1,有所以增大,示数增大;对并联支路,所以减小,示数减小;对R2,有,所以I2减小,A2示数减小。评点:从本题分析可以看出,在闭合电路中,只要外电路中的某一电阻发生变化,这时除电源电动势、内电阻和外电路中的定值电阻不变外,其他的如干路中的电流及各支路的电流、电压的分配,从而引起功率的分配等都和原来的不同,可谓“牵一发而动全身”,要注意电路中各量的同体、同时对应关系,因此要当作一个新的电路来分析。解题思路为局部电路整体电路局部电路,原则为不变应万变(先处
45、理不变量再判断变化量)。2. 直流电路的动态变化引起的功能及图象问题例2. 用伏安法测一节干电池的电动势和内电阻,伏安图象如图所示,根据图线回答:(1)干电池的电动势和内电阻各多大?(2)图线上a点对应的外电路电阻是多大?电源此时内部热耗功率是多少?(3)图线上a、b两点对应的外电路电阻之比是多大?对应的输出功率之比是多大?(4)在此实验中,电源最大输出功率是多大?图2解析:(1)开路时(I=0)的路端电压即电源电动势,因此,内电阻也可由图线斜率的绝对值即内阻,有:(2)a点对应外电阻此时电源内部的热耗功率:也可以由面积差求得:(3)电阻之比:输出功率之比:(4)电源最大输出功率出现在内、外电阻相等时,此时路端电压,干路电流,因而最大输出功率当然直接用计算或由对称性找乘积IU(对应于图线上的面积)的最大值,也可以求出此值。评点:利用题目给予图象回答问题,首先应识图(从对应值、斜率、截矩、面积、横纵坐标代表的物理量等),理解图象的物理意义及描述的物理过