收藏 分销(赏)

高中数学立体几何向量法归纳-PPT.pptx

上传人:精*** 文档编号:1296094 上传时间:2024-04-22 格式:PPTX 页数:44 大小:1.10MB
下载 相关 举报
高中数学立体几何向量法归纳-PPT.pptx_第1页
第1页 / 共44页
高中数学立体几何向量法归纳-PPT.pptx_第2页
第2页 / 共44页
高中数学立体几何向量法归纳-PPT.pptx_第3页
第3页 / 共44页
高中数学立体几何向量法归纳-PPT.pptx_第4页
第4页 / 共44页
高中数学立体几何向量法归纳-PPT.pptx_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、高中数学立体几何向量法归纳空间向量空间向量得运算空间向量基本定理空间向量得坐标运算加减与数乘运算共线向量共面向量空间向量得数量积知识结构夹角与距离平行与垂直1、空间直角坐标系、空间直角坐标系以单位正方体以单位正方体 的顶点的顶点O为原点,分别以射线为原点,分别以射线OA,OC,的方向的方向 为正方为正方向,以线段向,以线段OA,OC,的的长为单位长,建立三条数轴:长为单位长,建立三条数轴:x轴轴,y轴轴,z轴轴,这时我们建立了一这时我们建立了一个空间直角坐标系个空间直角坐标系CDBACOAByzxO为坐标原点为坐标原点,x轴轴,y轴轴,z轴叫坐标轴轴叫坐标轴,通过每两个坐标通过每两个坐标轴得平

2、面叫坐标平面轴得平面叫坐标平面一、基本概念右手直角坐标系右手直角坐标系空间直角坐标系空间直角坐标系Oxyz横轴横轴纵轴纵轴竖轴竖轴2、空间直角坐标系中点得坐标、空间直角坐标系中点得坐标有序实数组有序实数组(x,y,z)叫做点叫做点M在此空间在此空间直角坐标系中得坐标直角坐标系中得坐标,记作记作M(x,y,z)其中其中x叫做点叫做点M得横坐标得横坐标,y叫做点叫做点M得纵坐得纵坐标标,z叫做点叫做点M得竖坐标得竖坐标点点M(X,Y,Z)如果表示向量如果表示向量n得有向线段所在得直线垂得有向线段所在得直线垂直于平面直于平面,称这个向量垂直于平面称这个向量垂直于平面,记作记作n,这时向量这时向量n叫

3、做平面叫做平面得法向量得法向量、4、平面得法向量、平面得法向量n3、直线得方向向量、直线得方向向量1、假设平面法向量得坐标为、假设平面法向量得坐标为n=(x,y,z)、2、根据、根据na=0且且nb=0可列出方程组可列出方程组3、取某一个变量为常数、取某一个变量为常数(当然取得越简单越好当然取得越简单越好),便得到平面法向量便得到平面法向量n得坐标得坐标、anb5、平面法向量得求法、平面法向量得求法设设a=(x1,y1,z1)、b=(x2,y2,z2)就是平面就是平面内得两个不共内得两个不共线得非零向量线得非零向量,由直线与平面垂直得判定定理知由直线与平面垂直得判定定理知,若若n a且且n b

4、,则则n、换句话说换句话说,若若na=0且且nb=0,则则n、可按如下步骤求出平面得法向量得坐标可按如下步骤求出平面得法向量得坐标例、已知例、已知A(2,1,1),B(-2,7,0),C(6,4,-1)A(2,1,1),B(-2,7,0),C(6,4,-1)、求平求平面面ABCABC得法向量得法向量解解:平面平面ABCABC得法向量为得法向量为:大家有疑问得大家有疑问得,可以询问与交流可以询问与交流可以互相讨论下可以互相讨论下可以互相讨论下可以互相讨论下,但要小声点但要小声点但要小声点但要小声点 例、在棱长为例、在棱长为2得正方体得正方体ABCD-A1B1C1D1中中,O就是就是面面AC得中心

5、得中心,求面求面OA1D1得法向量得法向量、解:以解:以A为原点建立空间直角坐标系为原点建立空间直角坐标系O-xyz(如图),(如图),则则O(1,1,0),),A1(0,0,2),),D1(0,2,2),),设平面设平面OA1D1的法向量的法向量为的法向量的法向量为n=(x,y,z),由由 =(-1,-1,2),),=(-1,1,2)得)得 解得解得取取z=1得平面得平面OA1D1得法向得法向量得坐标量得坐标n=(2,0,1)A A BOzyA1C1B1AxCDD15、两法向量所成得角与二面角得关系、两法向量所成得角与二面角得关系设设n1、n2分别就是二面角两个半平面分别就是二面角两个半平面

6、、得法向量得法向量,由几何知识可知由几何知识可知,二面角二面角-L-得大小与法向量得大小与法向量n1、n2夹角相等或互补夹角相等或互补,于就是求二面角得大小可转化为于就是求二面角得大小可转化为求两个平面法向量得夹角求两个平面法向量得夹角、二、基本公式:1 1、两点间得距离公式、两点间得距离公式(线段得长度线段得长度)2 2、向量得长度公式、向量得长度公式(向量得模向量得模)3 3、向量得坐标运算公式、向量得坐标运算公式4 4、两个向量平行得条件、两个向量平行得条件5 5、两个向量垂直得条件、两个向量垂直得条件或7 7、重心坐标公式、重心坐标公式6 6、中点坐标公式、中点坐标公式9 9、直线与平

7、面、直线与平面所成角公式所成角公式(为为 的法向量的法向量)8 8、直线与直线所成角公式、直线与直线所成角公式 1010、平面与平面所成角公式、平面与平面所成角公式(为二面角两个半平面的法向量)为二面角两个半平面的法向量)1111、点到平面、点到平面得距离公式得距离公式(PM为平面为平面 的斜线的斜线,为平面为平面 的法向量)的法向量)1212、异面直线得、异面直线得距离公式距离公式(A,B为异面直线上两点为异面直线上两点,为公垂线的方向向量)为公垂线的方向向量)利用向量求利用向量求角角直线与直线所成得角直线与直线所成得角直线与平面所成得角直线与平面所成得角平面与平面所成得角平面与平面所成得角

8、(二面角二面角)利用向量求距离利用向量求距离点到直线得距离点到直线得距离点到平面得距离点到平面得距离直线到平面得距离直线到平面得距离平行到平面得距离平行到平面得距离直线到直线得距离直线到直线得距离三、基本应用利用向量证平行利用向量证平行利用向量证垂直利用向量证垂直直线与直线垂直直线与直线垂直直线与平面垂直直线与平面垂直平面与平面垂直平面与平面垂直直线与直线平行直线与直线平行直线与平面平行直线与平面平行平面与平面平行平面与平面平行四、基本方法1 1、平行问题、平行问题、垂直问题、垂直问题、角度问题、角度问题、距离问题、距离问题()点到点得距离、点到平面得距离、直线到直点到点得距离、点到平面得距离

9、、直线到直线得距离直接用公式求解。线得距离直接用公式求解。()点到直线得距离、直线到平面得距离、平面点到直线得距离、直线到平面得距离、平面到平面得距离转化为点到平面得距离求解。到平面得距离转化为点到平面得距离求解。例:题型一:线线角题型一:线线角五、典型例题所以:题型一:线线角题型一:线线角解:以点C 为坐标原点建立空间直角坐标系 如图所示,不妨设 则 C|所以所以 与与 所成角的余弦值为所成角的余弦值为题型二:线线垂直题型二:线线垂直ABDCA1B1D1C1例例、在正方体在正方体ACAC1 1中中,E E为为DDDD1 1得中点得中点,求证求证:DBDB1 1/面面A A1 1C C1 1E

10、 EEF题型四:线面平行题型四:线面平行xyz即即FEXYZ题型五:线面垂直题型五:线面垂直或先求平面BDE的法向量 再证明题型六:面面角题型六:面面角设平面xyzXYZ例例:在正方体在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,求证求证:面面A A1 1BDBD面面CBCB1 1D D1 1题型七:面面平行题型七:面面平行或先求两平面的法向量 再证明例、在正方体例、在正方体ACAC1 1中中,E E、F F分别就是分别就是BBBB1 1、CDCD得中点得中点,求证求证:面面AEDAED面面A A1 1FDFD1 1ABCDA1B1C1D1EFXYZ题型八:面面垂直题型八:面面垂直或证明两平面得法向量垂直或证明两平面得法向量垂直练习练习练习练习练习练习练习练习练习练习题型九:异面直线的距离题型九:异面直线的距离zxyABCC1即即取x=1,z则y=-1,z=1,所以EA1B1ABCDEFGXYZ题型十:点到平面的距离题型十:点到平面的距离练习练习练习练习练习练习练习练习

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服