资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,10-5 无剪力分配法,一、应用条件,:结构中有线位移的杆件其剪力是静定的。,P,P,P,P,P,P,A,B,C,D,P,P,P,A,B,C,D,P,2P,3P,柱剪力图,即,:刚架中除了无侧移杆外,其余杆件全是剪力静定杆。,二、单层单跨刚架,B,A,C,B,A,C,S,AB,=,i,AB,S,AC,=3,i,AC,只阻止转动,放松,单元分析:,A,B,A,B,M,AB,-,M,BA,Q,=0,等效,A,B,M,AB,S,AB,=,i,AB,C,AB,=-1,上面两个过程主要讨论剪力静定杆件的变形和受力特点。,(2)剪力静定杆件的转动刚度,S,=,i,;传递系数,C,=-1,。,(3)AC杆的计算与以前一样。,(1),求剪力静定杆的固端弯矩时,,先由平衡条件求出杆端剪力;将杆端剪力看作杆端荷载,按该端滑动,远端固定杆件计算固端弯矩。,1、剪力静定杆的固端弯矩:,将杆端剪力看作杆端荷载,按,该端滑动,另端固定的杆计算,固端弯矩。,2、剪力静定杆的转动刚度和传递系数:,A,A,B,M,AB,=,4,i,A,6,i/l,M,BA,=,2,i,A,6,i/l,Q,BA,=,(,M,AB,+M,BA,),/l=0,M,BA,=M,AB,,,M,AB,=i,A,剪力静定杆的,S=,i C=,1,/l=,A,/2,M,BA,=-i,A,求剪力静定杆的固端弯矩时,先由平衡条件求出杆端剪力;,例:,2m,2m,4m,5kN,A,B,C,1kN/m,i,1,=4,i,2,=3,(1),m,(2),S,、,、C,0.2,0.8,-2.67,-3.75,-5.33,1.28,5.14,-1.28,-1.39,1.39,-6.61,1.39,5.70,6.61,M,图,(kNm),三、多跨单层刚架,P,1,P,2,A,B,C,D,E,P,1,P,2,A,B,P,1,m,AB,m,AB,B,C,m,BC,m,CB,P,1,+,P,2,(1)求固端弯矩,AB、BC,杆是剪力静定杆。,1)由静力条件求出杆端剪力;,2)将杆端剪力作为荷载求固端弯矩,B,C,D,E,A,S,BA,=,i,AB,S,BE,=3,i,BE,S,BC,=,i,BC,B,C,i,BC,Q,=0,i,A,B,A,B,(2)分配与传递,在结点力矩作用下,剪力静定的杆件其剪力均为零,也就是说,在放松结点时,弯矩的分配与传递均在零剪力条件下进行,,这就是无剪力分配法名称的来源。,C,BC,=-1,C,BA,=-1,C,8kN,17kN,27,27,3.5,3.5,5,5,3.3m,3.6m,A,B,C,4kN,8.5kN,4kN,A,B,3.5,5,54,54,-6.6,-6.6,B,C,12.5kN,-22.5,-22.65,A,B,C,A,B,0.0211,0.9789,0.0293,0.0206,0.9501,-6.6,-6.6,-22.5,-22.5,0.6,27.65,0.85,-0.85,-0.6,0.15,7.05,-0.15,0,0.01,0.14,-0.01,-7.05,7.05,-6.15,27.79,-21.64,-23.36,例:,由结点,B,开始,8,m,6=48,m,5n,4kN,4kN,4kN,6kN,6kN,2kN,4kN,6kN,(3),(3),(3),(3),(3),(3),(4),(4),(4),(4),(5),(5),(5),(5),(2),(2),(1),(1),(1),2kN,3kN,6kN,6kN,2kN,3kN,2kN,3kN,6kN,6kN,2kN,3kN,2kN,3kN,6kN,6kN,2kN,3kN,(3),(5),(4),(2),(6),(4),M,=0,12kN,2kN,3kN,6kN,6kN,2kN,3kN,(3),(5),(4),(2),(6),(4),A,B,C,D,G,F,E,1、,求,:,2、,求,m,:,6kN,4kN,1kN,BC,BA,B,结点,杆端,A,C,D,AE,AB,BF,CB,CG,DC,m,6/7,1/7,12/19,6/15,4/15,24,CD,3/19,4/19,5/15,24,16,16,4,4,6.32 25.26 8.42,6.32,8.42,25.99 4.33,4.33,7.58 11.37 9.47,7.58,9.47,BC,BA,B,结点,杆端,A,C,D,AE,AB,BF,CB,CG,DC,m,6/7,1/7,12/19,6/15,4/15,24,CD,3/19,4/19,5/15,24,16,16,4,4,6.32 25.26 8.42,6.32,8.42,25.99 4.33,4.33,7.58 11.37 9.47,7.58,9.47,1.88 7.52 2.51,1.88,2.51,0.67 1.00 0.84,0.67,0.84,1.61 0.27,0.27,0.15 0.59 0.20,M,20.25,27.60,33.37,13.12,18.68,12.37,6.31,14.31,27.60,请自己完成弯矩图的绘制,A,E,F,G,B,C,D,10-6 无剪力分配法的应用,符合倍数关系的多跨刚架,在一定条件下多跨刚架可以分解成几个单跨对称刚架,多跨刚架的变形(内力)状态可以分解成几个单跨对称刚架的变形(内力)状态。,先讨论刚架在什么条件下才可能合并成一个多跨刚架。,一、倍数定理,独立倍数刚架,A,D,B,1,E,1,i,1,i,2,i,1,P,1,B,2,E,2,ni,1,ni,2,ni,1,C,F,nP,1,h,位移,内力成,1:,n,的关系,结论表明:两个刚架的线刚度与荷载均成比例时,,内力也成比例而变形相等。,刚架和刚架线刚度成1:,n,刚架和刚架 荷载成1:,n,刚架的串联,A,D,B,1,E,1,i,1,i,2,i,1,P,=(1+,n,),P,1,B,2,E,2,ni,1,ni,2,ni,1,C,F,刚架串联且荷载叠加后,两个刚架的内力和位移(变形)与原分开时相同(刚度成比例时荷载也按比例分配)。,独立倍数刚架,A,D,B,1,E,1,i,1,i,2,i,1,P,1,B,2,E,2,ni,1,ni,2,ni,1,C,F,nP,1,内力成比例而变形(位移)相等,多跨刚架,A,D,i,1,i,2,B,E,(,n,+1),i,1,ni,2,ni,1,C,F,P,=(1+,n,),P,1,在刚架串联中两个中间柱子的变形相同,故可合二为一,其线刚度为两个相邻柱线刚度之合,内力等于两个柱之和。,合成条件为:各单跨对称刚架的线刚度及结点水平荷载应符合倍数关系。,二、计算步骤,例:,10kN,(1)分解,(2)基本单元计算,0.2,0.8,-2.5,-2.5,0.5,2.0,-0.5,-2.0,2.0,-3.0,(3)单元弯矩图,2,2,3,2,3,4,4,6,4,6,6,2,3,2,2,4,4,9,6,(4)原刚架弯矩图,3m,M,(kNm),10kN,3m,方法2.合成计算,10kN,18,24,0.2,0.8,-15,-15,3,12,-3,-12,12,-18,12,12,18,M,(kNm),符合倍数关系的多层多跨刚架在水平结点荷载作用下的特性:,P,1,P,2,A,B,C,D,E,F,P,1,P,2,3,3,2,P,1,2,P,2,3,3,(1)同层各结点转角相等:,(2)由(1),各横梁两端转角相等,反弯点在各跨中点,跨中截面无挠度。,(3)由(2),对原刚架的计算可用半刚架或合成半刚架代替。,
展开阅读全文