资源描述
江苏省常州市常州高级中学2025-2026学年高一数学第一学期期末考试模拟试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.函数的图象大致为()
A. B.
C. D.
2.的零点所在区间为( )
A. B.
C. D.
3.满足的角的集合为()
A. B.
C. D.
4.函数与的图象在上的交点有()
A.个 B.个
C.个 D.个
5.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为
A. B.
C. D.
6.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于( )
A. B.
C. D.
7.设a,b,c均为正数,且,,,则a,b,c的大小关系是()
A. B.
C. D.
8.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为
A. B.
C. D.
9.圆与圆的位置关系是
A.相离 B.外切
C.相交 D.内切
10. “”是“”的()
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题:本大题共6小题,每小题5分,共30分。
11.函数定义域为________.(用区间表示)
12.若坐标原点在圆的外部,则实数m的取值范围是___
13.函数的最小值是________.
14.已知函数为奇函数,则______
15.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________
16.若,,则______
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数.
(1)当时,解不等式;
(2)若不等式在上恒成立,求实数的取值范围.
18.已知函数(,且).
(1)求的值,并证明不是奇函数;
(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.
注:设x为实数,表示不超过x的最大整数.
参考数据:,,,.
19.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围
20.为了考查甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:
甲
12
13
14
15
10
16
13
11
15
11
乙
11
16
17
14
13
19
6
8
10
16
哪种小麦长得比较整齐?
21.为宣传2022年北京冬奥会,某公益广告公司拟在一张矩形海报纸(记为矩形,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为.设直角梯形的高为.
(1)当时,求海报纸的面积;
(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少(即矩形的面积最小)?
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、A
【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.
【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.
故选:A
2、C
【解析】根据零点存在性定理进行判断即可
【详解】,,,
,根据零点存在性定理可得,则的零点所在区间为
故选C
【点睛】本题考查零点存性定理,属于基础题
3、D
【解析】利用正弦函数的图像性质即可求解.
【详解】.
故选:D.
4、B
【解析】在上解出方程,得出方程解的个数即可.
详解】当时,解方程,得,整理得,
得或.
解方程,解得、、、或.
解方程,解得、、.
因此,方程在上的解有个.
故选B.
【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.
5、A
【解析】
所求的全面积之比为: ,故选A.
6、D
【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出
【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ
由题意可得:,解得R=4
又2π×2=Rθ
∴θ=π
故选D
【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题
7、C
【解析】将分别看成对应函数的交点的横坐标,在同一坐标系作出函数的图像,数形结合可得答案.
【详解】在同一坐标系中分别画出,,的图象,
与的交点的横坐标为,
与的图象的交点的横坐标为,
与 的图象的交点的横坐标为,从图象可以看出
故选:C
8、D
【解析】根据正四棱柱的几何特征得:该球的直径为正四棱柱的体对角线,故,即得,所以该球的体积,故选D.
考点:正四棱柱的几何特征;球的体积.
9、D
【解析】圆的圆心,半径
圆的圆心,半径
∴
∴
∴两圆内切
故选D
点睛:判断圆与圆的位置关系的常见方法
(1)几何法:利用圆心距与两半径和与差的关系
(2)切线法:根据公切线条数确定
10、B
【解析】根据充分条件、必要条件的概念判断即可.
【详解】若,则成立,即必要性成立,反之若,则不成立,
所以“”是“”的必要不充分条件.
故选:B.
二、填空题:本大题共6小题,每小题5分,共30分。
11、
【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.
【详解】解:由,得,
所以函数的定义域为,
故答案为:.
12、
【解析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.
【详解】圆的标准方程为,则,
若坐标原点在圆的外部,则,解得,则实数m的取值范围是,
故答案为:
【点睛】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.
13、2
【解析】直接利用基本不等式即可得出答案.
【详解】解:因为,
所以,
当且仅当,即时,取等号,
所以函数的最小值为2.
故答案为:2.
14、##
【解析】利用奇函数的性质进行求解即可.
【详解】因为是奇函数,所以有,
故答案:
15、
【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值
【详解】∵函数的最小正周期为,
∴,即,
将的图象向左平移个单位长度,
所得函数为,
又所得图象关于原点对称,
∴,
即,又,
∴
故答案为:
【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法
16、
【解析】利用指数的运算性质可求得结果.
【详解】由指数的运算性质可得.
故答案为:.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【解析】(1)根据对数函数的定义域及单调性求解即可;
(2)由题意原问题转化为在上恒成立,
分与两种情况分类讨论,求出最值解不等式即可.
【详解】(1)时,函数定义域为
解得
不等式的解集为
(2)设,
由题意知,解得
,
在上恒成立
在上恒成立
令,
的图象是开口向下,对称轴方程为的抛物线.
①时,上恒成立
等价于
解得,这与矛盾.
②当时,在上恒成立
等价于
解得或
又
综上所述,实数的取值范围是
【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.
18、(1),证明见解析
(2)证明见解析,
【解析】(1)利用,可证明;
(2)利用零点的判定方法证明(5),可求得
【小问1详解】
证明:,
,
,
,
不是奇函数;
【小问2详解】
,
,
(5),
(5),
存在不为0的零点
19、.
【解析】对数真数大于零,所以,解得.为增函数,所以.由于是的子集,所以.
试题解析:
要使有意义,则,解得,
即
由,解得,
即
∴解得
故实数的取值范围是
考点:分式不等式,子集的概念.
【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.
20、乙种小麦长得比较整齐.
【解析】根据题意,要比较甲、乙两种小麦的长势更整齐,需比较它们的方差,先求出其平均数,再根据方差的计算方法计算方差,进行比较可得结论
试题解析:
由题中条件可得:
,
,
,
,
∵,∴乙种小麦长得比较整齐.
点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小,方差或标准差越小,则数据分布波动较小,相对比较稳定
21、(1)
(2)当海报纸宽为,长为,可使用纸量最少
【解析】(1)根据已知条件,先求出梯形长的底边,再分别求出,,即可求解;
(2)根据已知条件,结合基本不等式的公式,即可求解
【小问1详解】
宣传栏(图中阴影部分)的面积之和为,直角梯形的高为,
则梯形长的底边,
海报上所有水平方向和竖直方向的留空宽度均为,
,,
故海报面积为
【小问2详解】
直角梯形的高为,宣传栏(图中阴影部分)的面积之和为,
,
海报上所有水平方向和竖直方向的留空宽度均为,
海报宽,海报长,
故,
当且仅当,即,
故当海报纸宽为,长为,可使用纸量最少
展开阅读全文