收藏 分销(赏)

2025-2026学年河北省五个一联盟高一上数学期末学业水平测试试题含解析.doc

上传人:cg****1 文档编号:12773553 上传时间:2025-12-05 格式:DOC 页数:14 大小:688.50KB 下载积分:12.58 金币
下载 相关 举报
2025-2026学年河北省五个一联盟高一上数学期末学业水平测试试题含解析.doc_第1页
第1页 / 共14页
2025-2026学年河北省五个一联盟高一上数学期末学业水平测试试题含解析.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
2025-2026学年河北省五个一联盟高一上数学期末学业水平测试试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知命题p:,.那么为() A., B., C., D., 2.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是() A.回归直线一定经过样本点中心 B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位 C.年龄为10时,求得身高是,所以这名孩子的身高一定是 D.身高与年龄成正相关关系 3.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是() A.2 B.4 C.6 D.8 4.若,,若,则a的取值集合为( ) A. B. C. D. 5.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为() A.1 B.2 C.3 D.4 6.下列命题中是真命题的个数为() ①函数的对称轴方程是; ②函数的一个对称轴方程是; ③函数的图象关于点对称; ④函数的值域为 A1 B.2 C.3 D.4 7.若,的终边(均不在y轴上)关于x轴对称,则() A. B. C. D. 8.函数的定义域为() A.(-∞,4) B.[4,+∞) C.(-∞,4] D.(-∞,1)∪(1,4] 9.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为 A. B. C. D. 10.已知,则它们的大小关系是() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,则___________. 12.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时. 13.已知(其中且为常数)有两个零点,则实数的取值范围是___________. 14.已知函数 (1)当时,求的值域; (2)若,且,求的值; 15.不等式x2-5x+6≤0的解集为______. 16.过点,的直线的倾斜角为___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.求值: (1); (2) 18.计算求值: (1) (2)若,求的值. 19.已知函数,若,且,. (1)求与的值; (2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围. 20.已知集合, (Ⅰ)当时,求;; (Ⅱ)若,求实数的值 21.已知函数的图象与的图象关于轴对称,且的图象过点. (1)若成立,求的取值范围; (2)若对于任意,不等式恒成立,求实数的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】根据含有一个量词命题否定的定义,即可得答案. 【详解】命题p:,的否定为:,. 故选:A 2、C 【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D; 【详解】对于A,线性回归方程一定过样本中心点,故A正确; 对于B,由于斜率是估计值,可知B正确; 对于C,当时,求得身高是是估计值,故C错误; 对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确; 故选:C 【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题. 3、B 【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解. 【详解】因为为奇函数,所以函数的图象关于点中心对称, 将的图象向右平移个单位可得的图象, 所以图象关于点中心对称, 当时,, 令解得:或, 因为函数图象关于点中心对称, 则当时,有两解,为或, 所以函数的所有零点之和是, 故选:B 第II卷(非选择题 4、B 【解析】或,分类求解,根据可求得的取值集合 【详解】或, ,, 或或,解得或,综上, 故选: 5、C 【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果. 【详解】奇函数的定义域为R,其图象为一条连续不断的曲线, 得,由得, 所以,故函数在之间至少存在一个零点, 由奇函数的性质可知函数在之间至少存在一个零点, 所以函数在之间至少存在3个零点. 故选:C 6、B 【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择. 【详解】对①:函数的对称轴方程是,故①是假命题; 对②:函数的对称轴方程是:, 当时,其一条对称轴是,故②正确; 对函数, 其函数图象如下所示: 对③:数形结合可知,该函数的图象不关于对称,故③是假命题; 对④:数形结合可知,该函数值域为,故④为真命题. 综上所述,是真命题的有2个. 故选:. 7、A 【解析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解 【详解】因为,的终边(均不在轴上)关于轴对称, 则,, 选项,故正确, 选项,故错误, 选项,故错误, 选项,故错误, 故选: 8、D 【解析】根据函数式的性质可得,即可得定义域; 【详解】根据的解析式,有: 解之得:且; 故选:D 【点睛】本题考查了具体函数定义域的求法,属于简单题; 9、D 【解析】由题意,PE=BEcotθ1,PF=CFcotθ2, ∵BE=CF,θ1=θ2, ∴PE=PF 以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系, 设E(﹣,0),F(,0),P(x,y),则 (x+)2+y2=[(x﹣)2+y2], ∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为 故答案选:D 点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉 10、B 【解析】根据幂函数、指数函数性质判断大小关系. 【详解】由, 所以. 故选:B 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用函数的解析式由内到外逐层计算可得的值. 【详解】因为,则,故. 故答案为:. 12、 【解析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解. 【详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为, 当时,函数的解析式为,因为在曲线上,所以, 解得,所以函数的解析式为, 综上,, 由题意有或,解得,所以, 所以服药一次治疗疾病有效时间为个小时, 故答案为: 13、 【解析】设,可转化为有两个正解,进而可得参数范围. 【详解】设, 由有两个零点, 即方程有两个正解, 所以,解得, 即, 故答案为:. 14、(1) (2) 【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可; (2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解. 【小问1详解】 ,, 利用余弦函数的性质知,则 【小问2详解】 , 又,, 则 则 15、 【解析】根据二次函数的特点即可求解. 【详解】由x2-5x+6≤0,可以看作抛物线, 抛物线开口向上,与x轴的交点为, ∴,即原不等式的解集为 . 16、## 【解析】设直线的倾斜角为,求出直线的斜率即得解. 【详解】解:设直线的倾斜角为, 由题得直线的斜率为, 因为,所以. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)利用指数幂计算公式化简求值; (2)利用对数计算公式换件求值. 【小问1详解】 【小问2详解】 . 18、(1) (2) 【解析】(1)利用指数和对数运算法则直接计算可得结果; (2)分子分母同除即可求得结果. 【小问1详解】 原式. 小问2详解】 ,. 19、(1),.(2). 【解析】(1)由,可得,结合,得,,则,;(2), ,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围. 试题解析:(1)设,则,因为, 因为,得,,则,. (2)由题可知, ,. 当时,,在上单调递减,且, 单调递增,且,此时两个图象仅有一个交点. 当时,,在上单调递减, 在上单调递增,因为两个图象仅有一个交点,结合图象可知,得. 综上,正实数的取值范围是. 20、(Ⅰ), (Ⅱ)m的值为8 【解析】由, (Ⅰ)当m=3时,,则 (Ⅱ) , 此时,符合题意,故实数m的值为8 21、(1);(2). 【解析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性,列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可. 【详解】, ,, ; 由已知得, 即. (1)在上单调递减, , 解得, 的取值范围为. (2), 对于任意恒成立等价于, , , 令,, 则, , 当, 即, 即时, . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数, (1)若,,总有成立,故; (2)若,,有成立,故; (3)若,,有成立,故; (4)若,,有,则的值域是值域的子集
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服