资源描述
剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,*,*,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第,1,讲等差数列与等比数列,专题,三,数列与不等式,板块三专题突破关键考点,1/42,考情考向分析,1.,等差、等比数列基本量和性质考查是高考热点,经常以小题形式出现,.,2.,等差、等比数列判定及综合应用也是高考考查重点,注意基本量及定义使用,考查分析问题、处理问题综合能力,2/42,热点分类突破,真题押题精练,内容索引,3/42,热点分类突破,4/42,1.,通项公式,等差数列:,a,n,a,1,(,n,1),d,;,等比数列:,a,n,a,1,q,n,1,.,2.,求和公式,热点一等差数列、等比数列运算,5/42,3.,性质,若,m,n,p,q,,,在等差数列中,a,m,a,n,a,p,a,q,;,在等比数列中,a,m,a,n,a,p,a,q,.,6/42,例,1,(1)(,全国,),记,S,n,为等差数列,a,n,前,n,项和,若,3,S,3,S,2,S,4,,,a,1,2,,则,a,5,等于,A.,12 B.,10 C.10 D.12,解析,答案,解析,设等差数列,a,n,公差为,d,,由,3,S,3,S,2,S,4,,,将,a,1,2,代入上式,解得,d,3,,,故,a,5,a,1,(5,1),d,2,4,(,3),10.,故选,B.,7/42,解析,由题意可得,,S,4,S,2,q,2,S,2,,代入得,q,2,9.,等比数列,a,n,各项均为正数,,q,3,,解得,a,1,2,,故,a,5,162.,(2)(,杭州质检,),设各项均为正数等比数列,a,n,中,若,S,4,80,,,S,2,8,,则公比,q,_,,,a,5,_.,解析,答案,3,162,8/42,在进行等差,(,比,),数列项与和运算时,若条件和结论间联络不显著,则均可化成关于,a,1,和,d,(,q,),方程组求解,但要注意消元法及整体计算,以降低计算量,.,思维升华,9/42,跟踪演练,1,(1)(,浙江省重点中学联考,),设,S,n,为等差数列,a,n,前,n,项和,若,a,1,2 017,,,S,6,2,S,3,18,,则,S,2 019,等于,A.2 016 B.2 019 C.,2 017 D.,2 018,解析,答案,解析,在等差数列,a,n,中,设公差为,d,.,S,6,2,S,3,18,,,a,4,a,5,a,6,(,a,1,a,2,a,3,),9,d,18.,d,2,,,2 019,2 018,2 019,2 017,2 019,,故选,B.,10/42,(2)(,全国,),等比数列,a,n,中,,a,1,1,,,a,5,4,a,3,.,求,a,n,通项公式;,解答,解,设,a,n,公比为,q,,,由题设得,a,n,q,n,1,.,由已知得,q,4,4,q,2,,解得,q,0(,舍去,),,,q,2,或,q,2.,故,a,n,(,2),n,1,或,a,n,2,n,1,(,n,N,*,).,11/42,记,S,n,为,a,n,前,n,项和,若,S,m,63,,求,m,.,解答,由,S,m,63,得,(,2),m,188,,此方程没有正整数解,.,若,a,n,2,n,1,,则,S,n,2,n,1.,由,S,m,63,得,2,m,64,,解得,m,6.,综上,,m,6.,12/42,热点二等差数列、等比数列判定与证实,证实数列,a,n,是等差数列或等比数列证实方法,(1),证实数列,a,n,是等差数列两种基本方法,利用定义,证实,a,n,1,a,n,(,n,N,*,),为一常数;,利用等差中项,即证实,2,a,n,a,n,1,a,n,1,(,n,2,,,n,N,*,).,(2),证实数列,a,n,是等比数列两种基本方法,13/42,证实,(1),求证:数列,a,n,b,n,为等比数列;,又,a,1,b,1,3,(,1),4,,,所以,a,n,b,n,是首项为,4,,公比为,2,等比数列,.,14/42,解答,15/42,解,由,(1),知,,a,n,b,n,2,n,1,,,又,a,1,b,1,3,(,1),2,,,所以,a,n,b,n,为常数数列,,a,n,b,n,2,,,联立,得,,a,n,2,n,1,,,16/42,(1),判断一个数列是等差,(,比,),数列,也能够利用通项公式及前,n,项和公式,但不能作为证实方法,.,(2),a,n,1,a,n,1,(,n,2),是数列,a,n,为等比数列必要不充分条件,判断时还要看各项是否为零,.,思维升华,17/42,证实,当,n,2,时,有,a,n,S,n,S,n,1,,代入,(*),式得,2,S,n,(,S,n,S,n,1,),(,S,n,S,n,1,),2,1,,,又当,n,1,时,由,(*),式可得,a,1,S,1,1,,,18/42,解答,(2),求数列,a,n,通项公式;,又,a,1,S,1,1,满足上式,,19/42,解答,20/42,处理等差数列、等比数列综合问题,要从两个数列特征入手,理清它们关系;数列与不等式、函数、方程交汇问题,能够结合数列单调性、最值求解,.,热点三等差数列、等比数列综合问题,21/42,解答,例,3,已知等差数列,a,n,公差为,1,,且,a,2,a,7,a,12,6.,(1),求数列,a,n,通项公式,a,n,与其前,n,项和,S,n,;,解,由,a,2,a,7,a,12,6,,得,a,7,2,,,a,1,4,,,22/42,解答,(2),将数列,a,n,前,4,项抽去其中一项后,剩下三项按原来次序恰为等比数列,b,n,前,3,项,记,b,n,前,n,项和为,T,n,,若存在,m,N,*,,使得对任意,n,N,*,,总有,S,n,T,m,恒成立,求实数,取值范围,.,23/42,解,由题意知,b,1,4,,,b,2,2,,,b,3,1,,,T,m,为递增数列,得,4,T,m,8.,24/42,故,(,S,n,),max,S,4,S,5,10,,,若存在,m,N,*,,使得对任意,n,N,*,,总有,S,n,T,m,,,则,102.,即实数,取值范围为,(2,,,).,25/42,(1),等差数列与等比数列交汇问题,惯用,“,基本量法,”,求解,但有时灵活地利用性质,可使运算简便,.,(2),数列项或前,n,项和能够看作关于,n,函数,然后利用函数性质求解数列问题,.,(3),数列中恒成立问题能够经过分离参数,经过求数列值域求解,.,思维升华,26/42,解答,跟踪演练,3,已知数列,a,n,前,n,项和为,S,n,,且,S,n,1,3(,a,n,1),,,n,N,*,.,(1),求数列,a,n,通项公式;,解,由已知得,S,n,3,a,n,2,,令,n,1,,得,a,1,1,,,27/42,解答,28/42,解,由,a,n,1,29/42,真题押题精练,30/42,真题体验,1.(,全国,改编,),记,S,n,为等差数列,a,n,前,n,项和,.,若,a,4,a,5,24,,,S,6,48,,则,a,n,公差为,_.,解析,答案,4,解析,设,a,n,公差为,d,,,解得,d,4.,31/42,2.(,浙江改编,),已知等差数列,a,n,公差为,d,,前,n,项和为,S,n,,则,“,d,0,”,是,“,S,4,S,6,2,S,5,”,_,条件,.,解析,答案,充要,32/42,解析,方法一,数列,a,n,是公差为,d,等差数列,,S,4,4,a,1,6,d,,,S,5,5,a,1,10,d,,,S,6,6,a,1,15,d,,,S,4,S,6,10,a,1,21,d,,,2,S,5,10,a,1,20,d,.,若,d,0,,则,21,d,20,d,,,10,a,1,21,d,10,a,1,20,d,,,即,S,4,S,6,2,S,5,.,若,S,4,S,6,2,S,5,,则,10,a,1,21,d,10,a,1,20,d,,,即,21,d,20,d,,,d,0.,“,d,0,”,是,“,S,4,S,6,2,S,5,”,充要条件,.,方法二,S,4,S,6,2,S,5,S,4,S,4,a,5,a,6,2(,S,4,a,5,),a,6,a,5,a,5,d,a,5,d,0.,“,d,0,”,是,“,S,4,S,6,2,S,5,”,充要条件,.,33/42,3.(,北京,),若等差数列,a,n,和等比数列,b,n,满足,a,1,b,1,1,,,a,4,b,4,8,,则,_.,解析,答案,1,解析,设等差数列,a,n,公差为,d,,等比数列,b,n,公比为,q,,,则由,a,4,a,1,3,d,,,q,2.,34/42,解析,设,a,n,首项为,a,1,,公比为,q,,,解析,答案,32,35/42,押题预测,答案,解析,押题依据,押题依据,等差数列性质和前,n,项和是数列最基本知识点,也是高考热点,能够考查学生灵活变换能力,.,1.,设等差数列,a,n,前,n,项和为,S,n,,且,a,1,0,,,a,3,a,10,0,,,a,6,a,7,0,最大自然数,n,值为,A.6 B.7,C.12 D.13,36/42,解析,a,1,0,,,a,6,a,7,0,,,a,7,0,,,a,1,a,13,2,a,7,0,,,S,13,0,最大自然数,n,值为,12.,37/42,答案,解析,押题依据,押题依据,等差数列、等比数列综合问题可反应知识利用综合性和灵活性,是高考出题重点,.,2.,在等比数列,a,n,中,,a,3,3,a,2,2,,且,5,a,4,为,12,a,3,和,2,a,5,等差中项,则,a,n,公比等于,A.3 B.2,或,3,C.2 D.6,解析,设公比为,q,5,a,4,为,12,a,3,和,2,a,5,等差中项,可得,10,a,4,12,a,3,2,a,5,10,a,3,q,12,a,3,2,a,3,q,2,,得,10,q,12,2,q,2,,解得,q,2,或,3.,又,a,3,3,a,2,2,,所以,a,2,q,3,a,2,2,,即,a,2,(,q,3),2,,所以,q,2.,38/42,答案,解析,押题依据,押题依据,本题在数列、方程、不等式交汇处命题,综合考查学生应用数学能力,是高考命题方向,.,39/42,解析,由,a,7,a,6,2,a,5,,得,a,1,q,6,a,1,q,5,2,a,1,q,4,,,整理得,q,2,q,2,0,,,解得,q,2,或,q,1(,不合题意,舍去,).,40/42,押题依据,先定义一个新数列,然后要求依据定义条件推断这个新数列一些性质或者判断一个数列是否属于这类数列问题是近年来高考中逐步兴起一类问题,这类问题普通形式新奇,难度不大,常给人耳目一新感觉,.,4.,定义在,(,,,0),(0,,,),上函数,f,(,x,),,假如对于任意给定等比数列,a,n,,,f,(,a,n,),仍是等比数列,则称,f,(,x,),为,“,保等比数列函数,”.,现有定义在,(,,,0),(0,,,),上以下函数:,f,(,x,),x,2,;,f,(,x,),2,x,;,f,(,x,),f,(,x,),ln|,x,|.,则其中是,“,保等比数列函数,”,f,(,x,),序号为,A.,B.,C.,D.,答案,解析,押题依据,41/42,f,(,a,n,),f,(,a,n,2,),f,(,a,n,1,),2,;,f,(,a,n,),f,(,a,n,2,),ln|,a,n,|ln|,a,n,2,|,(ln|,a,n,1,|),2,f,(,a,n,1,),2,.,42/42,
展开阅读全文