资源描述
,8.5,空间向量及其运算,1/64,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/64,基础知识自主学习,3/64,1.,空间向量相关概念,知识梳理,名称,概念,表示,零向量,模为 向量,0,单位向量,长度(模)为 向量,相等向量,方向 且模 向量,a,b,0,1,相同,相等,4/64,相反向量,方向 且模 向量,a相反向量为a,共线向量,表示空间向量有向线段所在直线相互 向量,a,b,共面向量,平行于同一个 向量,相反,相等,平行或重合,平面,5/64,2.,空间向量中相关定理,(1),共线向量定理,对空间任意两个向量,a,,,b,(,a,0,),,,b,与,a,共线充要条件是存在实数,使,b,a,.,(2),共面向量定理,假如两个向量,a,,,b,不共线,那么向量,p,与向量,a,,,b,共面充要条件是存在有序实数,(,x,,,y,),,使,.,(3),空间向量基本定理,假如三个向量,e,1,,,e,2,,,e,3,不共面,那么对空间任一向量,p,,存在惟一有序实数组,(,x,,,y,,,z,),,使得,p,.,p,x,a,y,b,x,e,1,y,e,2,z,e,3,6/64,3.,空间向量数量积及运算律,(1),数量积及相关概念,两向量夹角,已知两个非零向量,a,,,b,,在空间任取一点,O,,作,a,,,b,,则,AOB,叫做向量,a,,,b,夹角,记作,,其范围是,,若,a,,,b,,则称,a,与,b,,记作,a,b,.,两向量数量积,已知空间两个非零向量,a,,,b,,则,叫做向量,a,,,b,数量积,记作,,即,a,b,.,a,,,b,0,a,,,b,相互垂直,|,a,|,b,|cos,a,,,b,a,b,|,a,|,b,|cos,a,,,b,7/64,(2),空间向量数量积运算律,结合律:,(,a,),b,;,交换律:,a,b,;,分配律:,a,(,b,c,),.,(,a,b,),b,a,a,b,a,c,8/64,4.,空间向量坐标表示及其应用,设,a,(,a,1,,,a,2,,,a,3,),,,b,(,b,1,,,b,2,,,b,3,).,向量表示,坐标表示,数量积,ab,_,共线,b,a,(,a,0,,,R,),_,垂直,a,b,0,(,a,0,,,b,0,),_,a,1,b,1,a,2,b,2,a,3,b,3,b,1,a,1,,,b,2,a,2,,,b,3,a,3,a,1,b,1,a,2,b,2,a,3,b,3,0,9/64,模,|,a,|,_,夹角,a,,,b,(,a,0,,,b,0,),cos,a,,,b,10/64,知识拓展,1.,向量三点共线定理:在平面中,A,、,B,、,C,三点共线充要条件是:,(,其中,x,y,1),,,O,为平面内任意一点,.,2.,向量四点共面定理:在空间中,P,、,A,、,B,、,C,四点共面充要条件是:,(,其中,x,y,z,1),,,O,为空间中任意一点,.,几何画板展示,几何画板展示,11/64,思索辨析,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),空间中任意两非零向量,a,,,b,共面,.(,),(2),在向量数量积运算中,(,a,b,),c,a,(,b,c,).(,),(3),对于非零向量,b,,由,a,b,b,c,,则,a,c,.(,),(4),两向量夹角范围与两异面直线所成角范围相同,.(,),(5),若,A,、,B,、,C,、,D,是空间任意四点,则有,0,.(,),12/64,考点自测,1.,已知正四面体,ABCD,棱长为,a,,点,E,,,F,分别是,BC,,,AD,中点,,则,值为,_.,答案,解析,则,|,a,|,|,b,|,|,c,|,a,,且,a,,,b,,,c,三向量两两夹角为,60.,(,a,2,cos 60,a,2,cos 60),a,2,.,13/64,2.(,苏州模拟,),向量,a,(,2,,,3,1),,,b,(2,0,4),,,c,(,4,,,6,2),,以下结论正确是,_.,a,b,,,a,c;,a,b,,,a,c,;,a,c,,,a,b,.,答案,解析,因为,c,(,4,,,6,2),2(,2,,,3,1),2,a,,,所以,a,c,.,又,a,b,(,2),2,(,3),0,1,4,0,,,所以,a,b,.,14/64,3.(,教材改编,),已知,a,(2,4,,,x,),,,b,(2,,,y,2),,若,|,a,|,6,,且,a,b,,则,x,y,值为,_.,答案,解析,1,或,3,依题意得,x,y,1,或,x,y,3.,15/64,4.,如图,在四面体,O,ABC,中,,a,,,b,,,c,,,D,为,BC,中点,,E,为,AD,中点,则,_.,(,用,a,,,b,,,c,表示,),答案,解析,16/64,5.(,教材改编,),正四面体,ABCD,棱长为,2,,,E,,,F,分别为,BC,,,AD,中点,则,EF,长为,_.,答案,解析,1,2,2,2,1,2,2(1,2,cos 120,0,2,1,cos 120),2,,,17/64,题型分类深度剖析,18/64,题型一空间向量线性运算,例,1,(1),如图所表示,在长方体,ABCD,A,1,B,1,C,1,D,1,中,,O,为,AC,中点,.,答案,解析,19/64,(2),三棱锥,O,ABC,中,,M,,,N,分别是,OA,,,BC,中点,,G,是,ABC,重心,用基向量,表示,.,解答,20/64,用已知向量表示某一向量方法,用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题关键,.,要正确了解向量加法、减法与数乘运算几何意义,.,首尾相接若干向量之和,等于由起始向量始点指向末尾向量终点向量,.,在立体几何中三角形法则、平行四边形法则依然成立,.,思维升华,21/64,跟踪训练,1,(,盐城模拟,),如图所表示,在空间几何体,ABCD,A,1,B,1,C,1,D,1,中,各面为平行四边形,设,a,,,b,,,c,,,M,,,N,,,P,分别是,AA,1,,,BC,,,C,1,D,1,中点,试用,a,,,b,,,c,表示以下各向量:,解答,因为,P,是,C,1,D,1,中点,,22/64,解答,因为,M,是,AA,1,中点,,23/64,题型二共线定理、共面定理应用,例,2,(,南京模拟,),已知,E,,,F,,,G,,,H,分别是空间四边形,ABCD,边,AB,,,BC,,,CD,,,DA,中点,.,(1),求证:,E,,,F,,,G,,,H,四点共面;,证实,连结,BG,,,由共面向量定理推论知,E,,,F,,,G,,,H,四点共面,.,24/64,证实,(2),求证:,BD,平面,EFGH,;,所以,EH,BD,.,又,EH,平面,EFGH,,,BD,平面,EFGH,,,所以,BD,平面,EFGH,.,25/64,(3),设,M,是,EG,和,FH,交点,求证:对空间任一点,O,,有,证实,26/64,找一点,O,,并连结,OM,,,OA,,,OB,,,OC,,,OD,,,OE,,,OG,.,由,(2),知,同理,所以,,即,EH,綊,FG,,,所以四边形,EFGH,是平行四边形,,所以,EG,,,FH,交于一点,M,且被,M,平分,.,27/64,(1),证实空间三点,P,,,A,,,B,共线方法,(,R,),;,对空间任一点,O,,,(,t,R,),;,对空间任一点,O,,,(,x,y,1).,(2),证实空间四点,P,,,M,,,A,,,B,共面方法,对空间任一点,O,,,对空间任一点,O,,,(,x,y,z,1),;,思维升华,28/64,跟踪训练,2,已知,A,,,B,,,C,三点不共线,对平面,ABC,外任一点,O,,若点,M,满足,(1),判断,三个向量是否共面;,解答,由题意知,29/64,(2),判断点,M,是否在平面,ABC,内,.,解答,由,(1),知,共面且基线过同一点,M,,,M,,,A,,,B,,,C,四点共面,.,从而点,M,在平面,ABC,内,.,30/64,题型三空间向量数量积应用,例,3,(,盐城模拟,),如图,已知平行六面体,ABCD,A,1,B,1,C,1,D,1,中,底面,ABCD,是边长为,1,正方形,,AA,1,2,,,A,1,AB,A,1,AD,120.,(1),求线段,AC,1,长;,解答,31/64,则,|,a,|,|,b,|,1,,,|,c,|,2,,,a,b,0,,,c,a,c,b,2,1,cos 120,1.,线段,AC,1,长为,.,32/64,(2),求异面直线,AC,1,与,A,1,D,所成角余弦值;,解答,设异面直线,AC,1,与,A,1,D,所成角为,,,a,b,c,,,b,c,,,(,a,b,c,)(,b,c,),a,b,a,c,b,2,c,2,0,1,1,2,2,2,2,,,故异面直线,AC,1,与,A,1,D,所成角余弦值为,.,33/64,(3),求证:,AA,1,BD,.,证实,c,(,b,a,),c,b,c,a,(,1),(,1),0,,,,,AA,1,BD,.,34/64,(1),利用向量数量积可证实线段垂直关系,也能够利用垂直关系,经过向量共线确定点在线段上位置;,(2),利用夹角公式,能够求异面直线所成角,也能够求二面角;,(3),能够经过,|,a,|,,将向量长度问题转化为向量数量积问题求解,.,思维升华,35/64,跟踪训练,3,如图,在平行六面体,ABCD,A,1,B,1,C,1,D,1,中,以顶点,A,为端点三条棱长度都为,1,,且两两夹角为,60.,(1),求,长;,解答,则,|,a,|,|,b,|,|,c,|,1,,,a,,,b,b,,,c,c,,,a,60,,,a,b,b,c,c,a,.,(,a,b,c,),2,a,2,b,2,c,2,2(,a,b,b,c,c,a,),1,1,1,2,(),6,,,,即,AC,1,长为,.,36/64,(2),求,与,夹角余弦值,.,解答,b,c,a,,,a,b,,,(,b,c,a,)(,a,b,),b,2,a,2,a,c,b,c,1,,,即,与,夹角余弦值为,.,37/64,典例,(14,分,),如图,已知直三棱柱,ABC,A,1,B,1,C,1,,在底面,ABC,中,,CA,CB,1,,,BCA,90,,棱,AA,1,2,,,M,,,N,分别是,A,1,B,1,,,A,1,A,中点,.,(1),求,模;,(2),求,cos,值;,(3),求证:,A,1,B,C,1,M,.,坐标法在立体几何中应用,思想与方法系列,18,规范解答,思想方法指导,利用向量处理立体几何问题时,首先要将几何问题转化成向量问题,经过建立坐标系利用向量坐标进行求解,.,38/64,(1),解,如图,建立空间直角坐标系,.,依题意得,B,(0,1,0),,,N,(1,0,1),,,39/64,(2),解,依题意得,A,1,(1,0,2),,,B,(0,1,0),,,C,(0,0,0),,,B,1,(0,,,1,2).,40/64,(3),证实,依题意得,C,1,(0,0,2),,,M,(,,,2),,,(,1,1,,,2),,,所以,,即,A,1,B,C,1,M,.,14,分,41/64,课时作业,42/64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1.,在以下命题中:,若向量,a,,,b,共线,则向量,a,,,b,所在直线平行;,若向量,a,,,b,所在直线为异面直线,则向量,a,,,b,一定不共面;,若三个向量,a,,,b,,,c,两两共面,则向量,a,,,b,,,c,共面;,已知空间三个向量,a,,,b,,,c,,则对于空间任意一个向量,p,总存在实数,x,,,y,,,z,使得,p,x,a,y,b,z,c,.,其中正确命题个数是,_.,答案,解析,0,43/64,a,与,b,共线,,a,,,b,所在直线也可能重合,故,不正确;,依据自由向量意义知,空间任意两向量,a,,,b,都共面,故,不正确;,三个向量,a,,,b,,,c,中任意两个一定共面,但它们三个却不一定共面,故,不正确;,只有当,a,,,b,,,c,不共面时,空间任意一向量,p,才能表示为,p,x,a,y,b,z,c,,故,不正确,综上可知四个命题中正确个数为,0.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,44/64,2.(,苏州模拟,),已知,a,(2,1,,,3),,,b,(,1,2,3),,,c,(7,6,,,),,若,a,,,b,,,c,三向量共面,则,_.,答案,解析,9,由题意知,c,x,a,y,b,,,即,(7,6,,,),x,(2,1,,,3),y,(,1,2,3),,,解得,9.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,45/64,3.(,南京检测,),如图所表示,在平行六面体,ABCD,A,1,B,1,C,1,D,1,中,,M,为,A,1,C,1,与,B,1,D,1,交点,.,若,a,,,b,,,c,,则向量,_.,(,用,a,,,b,,,c,表示,),答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,46/64,4.,如图,在大小为,45,二面角,A,EF,D,中,四边形,ABFE,,,CDEF,都是边长为,1,正方形,则,B,,,D,两点间距离是,_.,答案,解析,1,1,1,3,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,47/64,5.(,徐州模拟,),如图所表示,已知空间四边形,OABC,,其对角线为,OB,,,AC,,,M,,,N,分别为,OA,,,BC,中点,点,G,在线段,MN,上,且,,,若,,则,x,,,y,,,z,值分别为,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,48/64,x,,,y,z,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,49/64,6.,正方体,ABCD,A,1,B,1,C,1,D,1,棱长为,a,,点,M,在,AC,1,上且,,,N,为,B,1,B,中点,则,_.,答案,解析,以,D,为原点建立如图所表示空间直角坐标系,D,xyz,,,则,A,(,a,,,0,0),,,C,1,(0,,,a,,,a,),,,N,(,a,,,a,,,).,设,M,(,x,,,y,,,z,),,,点,M,在,AC,1,上且,,,(,x,a,,,y,,,z,),(,x,,,a,y,,,a,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,50/64,7.,A,,,B,,,C,,,D,是空间不共面四点,且,,,则,BCD,形状是,_,三角形,.(,填锐角、直角、钝角中一个,),答案,解析,锐角,所以,CBD,为锐角,.,同理,BCD,,,BDC,均为锐角,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,51/64,8.(,南京模拟,),设,O,ABC,是四面体,,G,1,是,ABC,重心,,G,是,OG,1,上一点,且,OG,3,GG,1,,若,,则,x,,,y,,,z,值分别,为,_.,答案,解析,如图所表示,取,BC,中点,E,,连结,AE,.,x,y,z,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,52/64,9.(,连云港模拟,),已知,a,(,x,4,1),,,b,(,2,,,y,,,1),,,c,(3,,,2,,,z,),,,a,b,,,b,c,,则,c,_.,答案,解析,(3,,,2,2),因为,a,b,,所以,,,解得,x,2,,,y,4,,,此时,a,(2,4,1),,,b,(,2,,,4,,,1),,,又因为,b,c,,所以,b,c,0,,,即,6,8,z,0,,解得,z,2,,于是,c,(3,,,2,2).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,53/64,10.,已知,ABCD,A,1,B,1,C,1,D,1,为正方体,,向量,与向量,夹角是,60,;,正方体,ABCD,A,1,B,1,C,1,D,1,体积为,其中正确序号是,_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,54/64,中,,,故,正确;,中,,,因为,AB,1,A,1,C,,故,正确;,中,两异面直线,A,1,B,与,AD,1,所成角为,60,,但,与,夹角为,120,,故,不正确;,中,,0,,故,也不正确,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,55/64,*11.,如图,在平行六面体,ABCD,A,1,B,1,C,1,D,1,中,点,M,,,P,,,Q,分别为棱,AB,,,CD,,,BC,中点,若平行六面体各棱长均相等,则,A,1,M,D,1,P,;,A,1,M,B,1,Q,;,A,1,M,平面,DCC,1,D,1,;,A,1,M,平面,D,1,PQB,1,.,以上正确说法个数为,_.,答案,解析,3,1,2,3,4,5,6,7,8,9,10,11,12,13,14,56/64,,,A,1,M,D,1,P,,,由线面平行判定定理可知,,A,1,M,平面,DCC,1,D,1,,,A,1,M,平面,D,1,PQB,1,.,正确,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,57/64,12.,如图所表示,已知空间四边形,ABCD,每条边和对角线长都等于,1,,点,E,,,F,,,G,分别是,AB,,,AD,,,CD,中点,计算:,解答,则,|,a,|,|,b,|,|,c,|,1,,,a,,,b,b,,,c,c,,,a,60,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,58/64,解答,(,bc,ab,c,2,ac,),.,(3),EG,长;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,59/64,(4),异面直线,AG,与,CE,所成角余弦值,.,解答,因为异面直线所成角范围是,,,所以异面直线,AG,与,CE,所成角余弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,60/64,*13.,如图,在直三棱柱,ABC,A,B,C,中,,AC,BC,AA,,,ACB,90,,,D,、,E,分别为,AB,、,BB,中点,.,(1),求证:,CE,A,D,;,证实,依据题意得,,|,a,|,|,b,|,|,c,|,,且,ab,bc,ca,0,,,即,CE,A,D,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,61/64,(2),求异面直线,CE,与,AC,所成角余弦值,.,解答,即异面直线,CE,与,AC,所成角余弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,62/64,14.,如图,在正方体,ABCD,A,1,B,1,C,1,D,1,中,,a,,,b,,,c,,点,M,,,N,分别是,A,1,D,,,B,1,D,1,中点,.,(1),试用,a,,,b,,,c,表示,;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,63/64,(2),求证:,MN,平面,ABB,1,A,1,.,证实,即,MN,AB,1,,,AB,1,平面,ABB,1,A,1,,,MN,平面,ABB,1,A,1,,,MN,平面,ABB,1,A,1,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,64/64,
展开阅读全文