收藏 分销(赏)

高考数学复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)——求空间角和距离市赛课公开课一.pptx

上传人:人****来 文档编号:12595815 上传时间:2025-11-08 格式:PPTX 页数:109 大小:8.70MB 下载积分:10 金币
下载 相关 举报
高考数学复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)——求空间角和距离市赛课公开课一.pptx_第1页
第1页 / 共109页
高考数学复习第八章立体几何与空间向量8.8立体几何中的向量方法(二)——求空间角和距离市赛课公开课一.pptx_第2页
第2页 / 共109页


点击查看更多>>
资源描述
,8.8,立体几何中向量方法,(,二,),求空间角和距离,1/109,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/109,基础知识自主学习,3/109,设,a,,,b,分别是两异面直线,l,1,,,l,2,方向向量,则,1.,两条异面直线所成角求法,知识梳理,l1与l2所成角,a与b夹角,范围,(0,,,0,,,求法,cos,cos,4/109,设直线,l,方向向量为,a,,平面,法向量为,n,,直线,l,与平面,所成角为,,,a,与,n,夹角为,,则,sin,|cos,|,.,2.,直线与平面所成角求法,3.,求二面角大小,(1),如图,,,AB,,,CD,分别是二面角,l,两个面内与棱,l,垂直直线,则二面角大小,.,5/109,(2),如图,,,n,1,,,n,2,分别是二面角,l,两个半平面,,,法向量,则二面角大小,满足,|cos,|,,二面角平面角大小是向量,n,1,与,n,2,夹角,(,或其补角,).,|cos,n,1,,,n,2,|,6/109,利用空间向量求距离,(,供选取,),(1),两点间距离,设点,A,(,x,1,,,y,1,,,z,1,),,点,B,(,x,2,,,y,2,,,z,2,),,则,|,AB,|,.,(2),点到平面距离,如图所表示,已知,AB,为平面,一条斜线段,,n,为平面,法向量,则,B,到平面,距离为,.,知识拓展,7/109,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),两直线方向向量所成角就是两条直线所成角,.(,),(2),直线方向向量和平面法向量所成角就是直线与平面所成角,.(,),(3),两个平面法向量所成角是这两个平面所成角,.(,),思索辨析,8/109,(5),若二面角,a,两个半平面,,,法向量,n,1,,,n,2,所成角为,,则二面角,a,大小是,.(,),9/109,1.(,烟台,质检,),已知两平面法向量分别为,m,(0,1,0),,,n,(0,1,1),,则两平面所成二面角为,A.45 B.135,C.45,或,135 D.90,考点自测,答案,解析,即,m,,,n,45.,两平面所成二面角为,45,或,180,45,135.,10/109,2.,已知向量,m,,,n,分别是直线,l,和平面,方向向量和法向量,若,cos,m,,,n,,则,l,与,所成角为,A.30 B.60 C.120 D.150,答案,解析,0,90,,,30.,故选,A.,11/109,3.(,郑州模拟,),如图,在空间直角坐标系中有直三棱柱,ABC,A,1,B,1,C,1,,,CA,CC,1,2,CB,,则直线,BC,1,与直线,AB,1,所成角余弦值为,答案,解析,设,CA,2,,则,C,(0,0,0),,,A,(2,0,0),,,B,(0,0,1),,,C,1,(0,2,0),,,B,1,(0,2,1),,可得向量,(,2,2,1),,,(0,2,,,1),,由向量夹角公式得,cos,,故选,A.,12/109,4.(,教材改编,),如图,,正三棱柱,(,底面是正三角形直棱柱,),ABC,A,1,B,1,C,1,底面边长为,2,,侧棱长为,2,,则,AC,1,与侧面,ABB,1,A,1,所成角为,_.,答案,解析,13/109,C,1,AD,为,AC,1,与平面,ABB,1,A,1,所成角,,14/109,5.,P,是二面角,AB,棱上一点,分别在平面,、,上引射线,PM,、,PN,,假如,BPM,BPN,45,,,MPN,60,,那么二面角,AB,大小为,_.,答案,解析,90,15/109,不妨设,PM,a,,,PN,b,,如图,,作,ME,AB,于,E,,,NF,AB,于,F,,,EPM,FPN,45,,,二面角,AB,大小为,90.,16/109,题型分类深度剖析,17/109,题型一求异面直线所成角,例,1,(,课标全国,),如图,四边形,ABCD,为菱形,,ABC,120,,,E,,,F,是平面,ABCD,同一侧两点,,BE,平面,ABCD,,,DF,平面,ABCD,,,BE,2,DF,,,AE,EC,.,(1),证实:平面,AEC,平面,AFC,;,证实,18/109,如图所表示,连接,BD,,设,BD,AC,G,,连接,EG,,,FG,,,EF,.,在菱形,ABCD,中,不妨设,GB,1.,由,ABC,120,,可得,AG,GC,.,由,BE,平面,ABCD,,,AB,BC,2,,可知,AE,EC,.,又,AE,EC,,所以,EG,,且,EG,AC,.,19/109,在直角梯形,BDFE,中,由,BD,2,,,BE,,,DF,,可得,EF,,从而,EG,2,FG,2,EF,2,,所以,EG,FG,.,又,AC,FG,G,,可得,EG,平面,AFC,.,因为,EG,平面,AEC,,所以平面,AEC,平面,AFC,.,20/109,(2),求直线,AE,与直线,CF,所成角余弦值,.,解答,所以直线,AE,与直线,CF,所成角余弦值为,.,21/109,思维升华,用向量法求异面直线所成角普通步骤,(1),选择三条两两垂直直线建立空间直角坐标系;,(2),确定异面直线上两个点坐标,从而确定异面直线方向向量;,(3),利用向量夹角公式求出向量夹角余弦值;,(4),两异面直线所成角余弦值等于两向量夹角余弦值绝对值,.,22/109,跟踪训练,1,如图所表示正方体,ABCD,A,B,C,D,,已知点,H,在,A,B,C,D,对角线,B,D,上,,HDA,60.,求,DH,与,CC,所成角大小,.,解答,23/109,如图所表示,以,D,为原点,,DA,为单位长度,建立空间直角坐标系,Dxyz,,,24/109,即,DH,与,CC,所成角为,45.,25/109,题型二求直线与平面所成角,例,2,(,全国丙卷,),如图,四棱锥,P-ABCD,中,,PA,底面,ABCD,,,AD,BC,,,AB,AD,AC,3,,,PA,BC,4,,,M,为线段,AD,上一点,,AM,2,MD,,,N,为,PC,中点,.,(1),证实,MN,平面,PAB,;,证实,26/109,取,BP,中点,T,,连接,AT,,,TN,,由,N,为,PC,中点知,TN,BC,,,TN,BC,2.,又,AD,BC,,故,TN,綊,AM,,四边形,AMNT,为平行四边形,于是,MN,AT,.,因为,AT,平面,PAB,,,MN,平面,PAB,,所以,MN,平面,PAB,.,27/109,(2),求直线,AN,与平面,PMN,所成角正弦值,.,解答,28/109,取,BC,中点,E,,连接,AE,.,由,AB,AC,得,AE,BC,,,以,A,为坐标原点,,方向为,x,轴正方向,建立如图所表示空间直角坐标系,Axyz,.,由题意知,,P,(0,0,4),,,M,(0,2,0),,,29/109,设,n,(,x,,,y,,,z,),为平面,PMN,法向量,则,30/109,思维升华,利用向量法求线面角方法,(1),分别求出斜线和它在平面内射影直线方向向量,转化为求两个方向向量夹角,(,或其补角,),;,(2),经过平面法向量来求,即求出斜线方向向量与平面法向量所夹锐角,取其余角就是斜线和平面所成角,.,31/109,跟踪训练,2,在平面四边形,ABCD,中,,AB,BD,CD,1,,,AB,BD,,,CD,BD,.,将,ABD,沿,BD,折起,使得平面,ABD,平面,BCD,,如图所表示,.,(1),求证:,AB,CD,;,证实,平面,ABD,平面,BCD,,平面,ABD,平面,BCD,BD,,,AB,平面,ABD,,,AB,BD,,,AB,平面,BCD,.,又,CD,平面,BCD,,,AB,CD,.,32/109,(2),若,M,为,AD,中点,求直线,AD,与平面,MBC,所成角正弦值,.,解答,33/109,过点,B,在平面,BCD,内作,BE,BD,,如图,.,由,(1),知,AB,平面,BCD,,,BE,平面,BCD,,,BD,平面,BCD,.,AB,BE,,,AB,BD,.,以,B,为坐标原点,,分别以,方向为,x,轴,,y,轴,,z,轴正方向建立空间直角坐标系,.,依题意,得,B,(0,0,0),,,C,(1,1,0),,,D,(0,1,0),,,A,(0,0,1),,,M,(0,,,),,,设平面,MBC,法向量,n,(,x,0,,,y,0,,,z,0,),,,34/109,取,z,0,1,,得平面,MBC,一个法向量,n,(1,,,1,1).,设直线,AD,与平面,MBC,所成角为,,,35/109,题型三求二面角,例,3,(,山东,),在如图所表示圆台中,,AC,是下底面圆,O,直径,,EF,是上底面圆,O,直径,,FB,是圆台一条母线,.,(1),已知,G,,,H,分别为,EC,,,FB,中点,求证:,GH,平面,ABC,;,证实,36/109,设,FC,中点为,I,,连接,GI,,,HI,,,在,CEF,中,因为点,G,是,CE,中点,所以,GI,EF,.,又,EF,OB,,所以,GI,OB,.,在,CFB,中,因为,H,是,FB,中点,所以,HI,BC,,又,HI,GI,I,,,所以平面,GHI,平面,ABC,.,因为,GH,平面,GHI,,所以,GH,平面,ABC,.,37/109,解答,38/109,连接,OO,,则,OO,平面,ABC,.,又,AB,BC,,,且,AC,是圆,O,直径,所以,BO,AC,.,以,O,为坐标原点,,建立如图所表示空间直角坐标系,Oxyz,.,39/109,设,m,(,x,,,y,,,z,),是平面,BCF,一个法向量,.,因为平面,ABC,一个法向量,n,(0,0,1),,,40/109,思维升华,利用向量法计算二面角大小惯用方法,(1),找法向量法:分别求出二面角两个半平面所在平面法向量,然后经过两个平面法向量夹角得到二面角大小,但要注意结合实际图形判断所求角大小,.,(2),找与棱垂直方向向量法:分别在二面角两个半平面内找到与棱垂直且以垂足为起点两个向量,则这两个向量夹角大小就是二面角大小,.,41/109,跟踪训练,3,(,天津,),如图,正方形,ABCD,中心为,O,,四边形,OBEF,为矩形,平面,OBEF,平面,ABCD,,点,G,为,AB,中点,,AB,BE,2.,(1),求证:,EG,平面,ADF,;,证实,42/109,依题意,,OF,平面,ABCD,,,如图,以,O,为原点,分别以,方向为,x,轴,,y,轴,,z,轴正方向建立空间直角坐标系,依题意可得,O,(0,0,0),,,A,(,1,1,0),,,B,(,1,,,1,0),,,C,(1,,,1,0),,,D,(1,1,0),,,E,(,1,,,1,2),,,F,(0,0,2),,,G,(,1,0,0).,设,n,1,(,x,1,,,y,1,,,z,1,),为平面,ADF,法向量,,43/109,44/109,(2),求二面角,O,EF,C,正弦值;,解答,45/109,易证,(,1,1,0),为平面,OEF,一个法向量,,依题意,,(1,1,0),,,(,1,1,2).,设,n,2,(,x,2,,,y,2,,,z,2,),为平面,CEF,法向量,,46/109,不妨取,x,2,1,,可得,n,2,(1,,,1,1).,47/109,解答,48/109,49/109,题型四求空间距离,(,供选取,),例,4,如图,,BCD,与,MCD,都是边长为,2,正三角形,平面,MCD,平面,BCD,,,AB,平面,BCD,,,AB,2,,求点,A,到平面,MBC,距离,.,解答,50/109,如图,取,CD,中点,O,,连接,OB,,,OM,,因为,BCD,与,MCD,均为正三角形,所以,OB,CD,,,OM,CD,,又平面,MCD,平面,BCD,,所以,MO,平面,BCD,.,以,O,为坐标原点,直线,OC,,,BO,,,OM,分别为,x,轴,,y,轴,,z,轴,建立空间直角坐标系,Oxyz,.,因为,BCD,与,MCD,都是边长为,2,正三角形,,51/109,设平面,MBC,法向量为,n,(,x,,,y,,,z,),,,52/109,思维升华,求点面距普通有以下三种方法:,(1),作点到面垂线,点到垂足距离即为点到平面距离;,(2),等体积法;,(3),向量法,.,其中向量法在易建立空间直角坐标系规则图形中较简便,.,53/109,跟踪训练,4,(,四川成都外国语学校月考,),如图所表示,在四棱锥,P,ABCD,中,侧面,PAD,底面,ABCD,,侧棱,PA,PD,,,PA,PD,,底面,ABCD,为直角梯形,其中,BC,AD,,,AB,AD,,,AB,BC,1,,,O,为,AD,中点,.,(1),求直线,PB,与平面,POC,所成角余弦值;,解答,54/109,在,PAD,中,,PA,PD,,,O,为,AD,中点,,PO,AD,.,又,侧面,PAD,底面,ABCD,,平面,PAD,平面,ABCD,AD,,,PO,平面,PAD,,,PO,平面,ABCD,.,在,PAD,中,,PA,PD,,,PA,PD,,,AD,2.,在直角梯形,ABCD,中,,O,为,AD,中点,,AB,AD,,,OC,AD,.,以,O,为坐标原点,,OC,为,x,轴,,OD,为,y,轴,,OP,为,z,轴建立空间直角坐标系,如图所表示,,55/109,则,P,(0,0,1),,,A,(0,,,1,0),,,B,(1,,,1,0),,,C,(1,0,0),,,D,(0,1,0),,,(1,,,1,,,1).,易证,OA,平面,POC,,,(0,,,1,0),为平面,POC,法向量,,56/109,(2),求,B,点到平面,PCD,距离;,解答,57/109,(1,,,1,,,1),,,设平面,PCD,法向量为,u,(,x,,,y,,,z,),,,取,z,1,,得,u,(1,1,1).,58/109,解答,59/109,Q,(0,,,,,1,).,设平面,CAQ,法向量为,m,(,x,,,y,,,z,),,,取,z,1,,得,m,(1,,,1,,,1).,平面,CAD,一个法向量为,n,(0,0,1),,,60/109,整理化简,得,3,2,10,3,0.,61/109,典例,(12,分,),如图,在四棱锥,P,ABCD,中,,PA,底面,ABCD,,,AD,AB,,,AB,DC,,,AD,DC,AP,2,,,AB,1,,点,E,为棱,PC,中点,.,(1),证实:,BE,DC,;,(2),求直线,BE,与平面,PBD,所成角正弦值;,(3),若,F,为棱,PC,上一点,满足,BF,AC,,求二面角,F,AB,P,余弦值,.,利用空间向量求解空间角,答题模板系列,6,规范解答,答题模板,62/109,(1),证实,依题意,以点,A,为原点建立空间直角坐标系如图,可得,B,(1,0,0),,,C,(2,2,0),,,D,(0,2,0),,,P,(0,0,2).,1,分,由,E,为棱,PC,中点,得,E,(1,1,1).,设,n,(,x,,,y,,,z,),为平面,PBD,一个法向量,,63/109,可得,n,(2,1,1).,64/109,所以,,2(1,2,),2(2,2,),0,,解得,,,设,n,1,(,x,,,y,,,z,),为平面,FAB,一个法向量,,65/109,不妨令,z,1,,可得,n,1,(0,,,3,1).,取平面,ABP,法向量,n,2,(0,1,0),,,易知,二面角,F,AB,P,是锐角,,返回,66/109,利用向量求空间角步骤,:,第一步:建立空间直角坐标系,;,第二步:确定点坐标,;,第三步:求向量,(,直线方向向量、平面法向量,),坐标,;,第四步:计算向量夹角,(,或函数值,),;,第五步:将向量夹角转化为所求空间角,;,第六步:反思回顾,.,查看关键点、易错点和答题规范,.,返回,67/109,课时作业,68/109,1.,若直线,l,方向向量与平面,法向量夹角等于,120,,则直线,l,与平面,所成角等于,A.120 B.60,C.30 D.60,或,30,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,设直线,l,与平面,所成角为,,直线,l,与平面,法向量夹角为,.,则,sin,|cos,|,|cos 120|,.,又,0,,,90,,,30,,故选,C.,69/109,1,2,3,4,5,6,7,8,9,10,11,12,2.(,广州模拟,),二面角棱上有,A,,,B,两点,直线,AC,,,BD,分别在这个二面角两个半平面内,且都垂直于,AB,.,已知,AB,4,,,AC,6,,,BD,8,,,CD,2,,则该二面角大小为,A.150 B.45,C.60 D.120,答案,解析,70/109,1,2,3,4,5,6,7,8,9,10,11,12,71/109,1,2,3,4,5,6,7,8,9,10,11,12,3.,在正方体,ABCD,A,1,B,1,C,1,D,1,中,点,E,为,BB,1,中点,则平面,A,1,ED,与平面,ABCD,所成锐二面角余弦值为,答案,解析,72/109,以,A,为原点建立如图所表示空间直角坐标系,Axyz,,设棱长为,1,,,设平面,A,1,ED,一个法向量为,n,1,(1,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,73/109,平面,ABCD,一个法向量为,n,2,(0,0,1),,,1,2,3,4,5,6,7,8,9,10,11,12,74/109,1,2,3,4,5,6,7,8,9,10,11,12,4.(,长春模拟,),在三棱锥,P,ABC,中,,PA,平面,ABC,,,BAC,90,,,D,,,E,,,F,分别是棱,AB,,,BC,,,CP,中点,,AB,AC,1,,,PA,2,,则直线,PA,与平面,DEF,所成角正弦值为,答案,解析,75/109,以,A,为原点,,AB,,,AC,,,AP,所在直线分别为,x,轴,,y,轴,,z,轴建立如图所表示空间直角坐标系,,由,AB,AC,1,,,PA,2,,,设平面,DEF,法向量为,n,(,x,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,76/109,取,z,1,,则,n,(2,0,1),,,设直线,PA,与平面,DEF,所成角为,,,直线,PA,与平面,DEF,所成角正弦值为,.,故选,C.,1,2,3,4,5,6,7,8,9,10,11,12,77/109,1,2,3,4,5,6,7,8,9,10,11,12,5.,已知正四棱柱,ABCD,A,1,B,1,C,1,D,1,中,,AB,2,,,CC,1,2,,,E,为,CC,1,中点,则直线,AC,1,到平面,BDE,距离为,答案,解析,78/109,以,D,为原点,,DA,,,DC,,,DD,1,所在直线分别为,x,轴,,y,轴,,z,轴建立空间直角坐标系,(,如图,),,,则,D,(0,0,0),,,A,(2,0,0),,,B,(2,2,0),,,C,(0,2,0),,,C,1,(0,2,2 ),,,E,(0,2,,,),,易知,AC,1,平面,BDE,.,设,n,(,x,,,y,,,z,),是平面,BDE,法向量,,取,y,1,,则,n,(,1,1,,,),为平面,BDE,一个法向量,,1,2,3,4,5,6,7,8,9,10,11,12,79/109,又,(2,0,0),,,点,A,到平面,BDE,距离是,故直线,AC,1,到平面,BDE,距离为,1.,1,2,3,4,5,6,7,8,9,10,11,12,80/109,1,2,3,4,5,6,7,8,9,10,11,12,6.,如图所表示,三棱柱,ABC,A,1,B,1,C,1,侧棱长为,3,,底面边长,A,1,C,1,B,1,C,1,1,,且,A,1,C,1,B,1,90,,,D,点在棱,AA,1,上且,AD,2,DA,1,,,P,点在棱,C,1,C,上,则,最小值为,答案,解析,81/109,建立如图所表示空间直角坐标系,则,D,(1,0,2),,,B,1,(0,1,3),,,1,2,3,4,5,6,7,8,9,10,11,12,82/109,1,2,3,4,5,6,7,8,9,10,11,12,7.(,合肥模拟,),在长方体,ABCD,A,1,B,1,C,1,D,1,中,,AB,2,,,BC,AA,1,1,,,则直线,D,1,C,1,与平面,A,1,BC,1,所成角正弦值为,_.,答案,解析,83/109,如图,建立空间直角坐标系,Dxyz,,,则,D,1,(0,0,1),,,C,1,(0,2,1),,,A,1,(1,0,1),,,B,(1,2,0).,设平面,A,1,BC,1,一个法向量为,n,(,x,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,84/109,设直线,D,1,C,1,与平面,A,1,BC,1,所成角为,,则,1,2,3,4,5,6,7,8,9,10,11,12,85/109,1,2,3,4,5,6,7,8,9,10,11,12,8.,在正四棱柱,ABCD,A,1,B,1,C,1,D,1,中,,AA,1,2,AB,,则直线,CD,与平面,BDC,1,所成角正弦值等于,_.,答案,解析,86/109,以,D,为坐标原点,建立空间直角坐标系,,如图,设,AA,1,2,AB,2,,则,D,(0,0,0),,,C,(0,1,0),,,B,(1,1,0),,,C,1,(0,1,2),,,所以有,令,y,2,,,得平面,BDC,1,一个法向量为,n,(2,,,2,1).,设,CD,与平面,BDC,1,所成角为,,,1,2,3,4,5,6,7,8,9,10,11,12,87/109,1,2,3,4,5,6,7,8,9,10,11,12,9.(,石家庄模拟,),已知点,E,,,F,分别在正方体,ABCD,A,1,B,1,C,1,D,1,棱,BB,1,,,CC,1,上,且,B,1,E,2,EB,,,CF,2,FC,1,,则平面,AEF,与平面,ABC,所成,二面角正切值为,_.,答案,解析,88/109,如图,建立空间直角坐标系,Dxyz,,,设,DA,1,,由已知条件得,设平面,AEF,法向量为,n,(,x,,,y,,,z,),,,平面,AEF,与平面,ABC,所成二面角为,,由图知,为锐角,,1,2,3,4,5,6,7,8,9,10,11,12,89/109,取平面,ABC,法向量为,m,(0,0,,,1),,,1,2,3,4,5,6,7,8,9,10,11,12,令,y,1,,,z,3,,,x,1,,则,n,(,1,1,,,3),,,90/109,1,2,3,4,5,6,7,8,9,10,11,12,10.(,南昌模拟,),如图,(1),,在边长为,4,菱形,ABCD,中,,DAB,60,,点,E,,,F,分别是边,CD,,,CB,中点,,AC,EF,O,,沿,EF,将,CEF,翻折到,PEF,,连接,PA,,,PB,,,PD,,得到如图,(2),五棱锥,P,ABFED,,且,PB,.,(1),求证:,BD,平面,POA,;,证实,91/109,点,E,,,F,分别是边,CD,,,CB,中点,,BD,EF,.,菱形,ABCD,对角线相互垂直,,BD,AC,,,EF,AC,,,EF,AO,,,EF,PO,.,AO,平面,POA,,,PO,平面,POA,,,AO,PO,O,,,EF,平面,POA,,,BD,平面,POA,.,1,2,3,4,5,6,7,8,9,10,11,12,92/109,(2),求二面角,B,AP,O,正切值,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,93/109,设,AO,BD,H,,连接,BO,.,DAB,60,,,ABD,为等边三角形,,BD,4,,,BH,2,,,HA,2,,,HO,PO,,,在,PBO,中,,BO,2,PO,2,10,PB,2,,,PO,BO,.,PO,EF,,,EF,BO,O,,,EF,平面,BFED,,,BO,平面,BFED,,,PO,平面,BFED,.,1,2,3,4,5,6,7,8,9,10,11,12,94/109,以,O,为原点,,OF,所在直线为,x,轴,,AO,所在直线为,y,轴,,OP,所在直线为,z,轴,建立空间直角坐标系,Oxyz,,如图所表示,,设平面,PAB,法向量为,n,(,x,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,95/109,由,(1),知平面,PAO,一个法向量为,(,2,0,0),,,设二面角,B,AP,O,平面角为,,,1,2,3,4,5,6,7,8,9,10,11,12,96/109,1,2,3,4,5,6,7,8,9,10,11,12,11.(,四川,),如图,在四棱锥,P-ABCD,中,,AD,BC,,,ADC,PAB,90,,,BC,CD,AD,.,E,为棱,AD,中点,异面直线,PA,与,CD,所成角为,90.,(1),在平面,PAB,内找一点,M,,使得直线,CM,平面,PBE,,并说明理由;,解答,97/109,在梯形,ABCD,中,,AB,与,CD,不平行,.,延长,AB,,,DC,,相交于点,M,(,M,平面,PAB,),,点,M,即为所求一个点,.,理由以下:,由已知,,BC,ED,且,BC,ED,.,所以四边形,BCDE,是平行四边形,,从而,CM,EB,.,又,EB,平面,PBE,,,CM,平面,PBE,,,所以,CM,平面,PBE,.,(,说明:延长,AP,至点,N,,使得,AP,PN,,则所找点能够是直线,MN,上任意一点,),1,2,3,4,5,6,7,8,9,10,11,12,98/109,(2),若二面角,P-CD-A,大小为,45,,求直线,PA,与平面,PCE,所成角正弦值,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,99/109,方法一,由已知,,CD,PA,,,CD,AD,,,PA,AD,A,,,所以,CD,平面,PAD,,从而,CD,PD,.,所以,PDA,是二面角,P-CD-A,平面角,,所以,PDA,45,,,设,BC,1,,则在,Rt,PAD,中,,PA,AD,2.,过点,A,作,AH,CE,,交,CE,延长线于点,H,,连接,PH,,,易知,PA,平面,ABCD,,,从而,PA,CE,,且,PA,AH,A,,于是,CE,平面,PAH,.,又,CE,平面,PCE,,,所以平面,PCE,平面,PAH,.,1,2,3,4,5,6,7,8,9,10,11,12,100/109,过,A,作,AQ,PH,于,Q,,则,AQ,平面,PCE,,,所以,APH,是,PA,与平面,PCE,所成角,.,在,Rt,AEH,中,,AEH,45,,,AE,1,,,方法二由已知,,CD,PA,,,CD,AD,,,PA,AD,A,,,所以,CD,平面,PAD,.,于是,CD,PD,.,1,2,3,4,5,6,7,8,9,10,11,12,101/109,从而,PDA,是二面角,P-CD-A,平面角,.,所以,PDA,45.,由,PAB,90,,且,PA,与,CD,所成角为,90,,可得,PA,平面,ABCD,.,设,BC,1,,则在,Rt,PAD,中,,PA,AD,2.,则,A,(0,0,0),,,P,(0,0,2),,,C,(2,1,0),,,E,(1,0,0).,作,Ay,AD,,以,A,为原点,以,方向分别为,x,轴,,z,轴正方向,建立如图所表示空间直角坐标系,Axyz,,,设平面,PCE,法向量为,n,(,x,,,y,,,z,).,1,2,3,4,5,6,7,8,9,10,11,12,102/109,设,x,2,,解得,n,(2,,,2,1).,设直线,PA,与平面,PCE,所成角为,,,所以直线,PA,与平面,PCE,所成角正弦值为,.,1,2,3,4,5,6,7,8,9,10,11,12,103/109,1,2,3,4,5,6,7,8,9,10,11,12,*12.(,潍坊模拟,),如图,边长为,正方形,ADEF,与梯形,ABCD,所在平面相互垂直,.,已知,AB,CD,,,AB,BC,,,DC,BC,AB,1,,点,M,在线段,EC,上,.,(1),证实:平面,BDM,平面,ADEF,;,证实,104/109,DC,BC,1,,,DC,BC,,,AD,2,BD,2,AB,2,,,ADB,90,,,AD,BD,.,又平面,ADEF,平面,ABCD,,平面,ADEF,平面,ABCD,AD,,,BD,平面,ADEF,,,又,BD,平面,BDM,,,平面,BDM,平面,ADEF,.,1,2,3,4,5,6,7,8,9,10,11,12,105/109,解答,(2),判断点,M,位置,使得平面,BDM,与平面,ABF,所成锐二面角为,.,1,2,3,4,5,6,7,8,9,10,11,12,106/109,在平面,DAB,内过点,D,作,DN,AB,,垂足为,N,,,AB,CD,,,DN,CD,,,又平面,ADEF,平面,ABCD,,平面,ADEF,平面,ABCD,AD,,,DE,AD,,,ED,平面,ABCD,,,DN,ED,,,以,D,为坐标原点,,DN,所在直线为,x,轴,,DC,所在,直线为,y,轴,,DE,所在直线为,z,轴,建立空间直角坐,标系如图所表示,.,B,(1,1,0),,,C,(0,1,0),,,E,(0,0,,,),,,N,(1,0,0),,,1,2,3,4,5,6,7,8,9,10,11,12,107/109,设平面,BDM,法向量为,n,1,(,x,,,y,,,z,),,,1,2,3,4,5,6,7,8,9,10,11,12,108/109,点,M,在线段,CE,三等分点且靠近点,C,处,.,1,2,3,4,5,6,7,8,9,10,11,12,109/109,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服