收藏 分销(赏)

电动力学--第一章.ppt

上传人:精**** 文档编号:12549425 上传时间:2025-10-28 格式:PPT 页数:79 大小:2.74MB 下载积分:16 金币
下载 相关 举报
电动力学--第一章.ppt_第1页
第1页 / 共79页
电动力学--第一章.ppt_第2页
第2页 / 共79页


点击查看更多>>
资源描述
,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,电动力学 第一章,本章重点、难点及主要内容简介,本章重点:从特殊到一般,由一些重要的实验定律及一些假设总结出麦克斯韦方程。,主要内容:,讨论几个定律,总结出静电场、静磁场方程;,找出问题,提出假设,总结真空中麦氏方程;,讨论介质电磁性质,得出介质中麦氏方程;,给出求解麦氏方程的边值关系;引入电磁场能量、能流并讨论电磁能量的传输。,本章难点:电磁场的边值关系、电磁场能量。,1.,电荷和静电场,一、库仑定律和电场强度,描述一个静止点电荷对另一静止点电荷的作用力,Q,Q,1.库仑定律,静电学的基本实验定律;Q,对Q的作用力为 ;两种物理解释:,超距作用:一个点电荷不需中间媒介直接施力与另一点电荷。,场传递:相互作用通过场来传递。,对静电情况两种观点等价,2.,点电荷电场强度,它的方向沿试探电荷受力的方向,大小与试探点电荷无关。给定Q,它仅是空间点函数,因而静电场是一个矢量场。,电荷周围空间存在电场:即任何电荷都在自己周围空间激发电场。,电荷,电场,电荷,电场的基本性质,:,对电场中的电荷有力的作用,描述电场的函数-电场强度,3,场的叠加原理(实验定律),电荷系在空间某点产生的电场强度等于组成该电荷系的各点电荷单独存在时在该点产生的场强的矢量和。,Q,1,Q,n,Q,i,平行四边形型法则,4电荷密度分布,体电荷,面电荷,线电荷,5,连续分布电荷激发的电场强度,对场中一个点电荷,受力 仍成立,dQ,P,r,若已知 ,原则上可求出 。若不能积分,可近似求解或数值积分。但是在许多实际情况 不总是已知的。例如,空间存在导体或介质,导体上会出现感应电荷分布,介质中会出现束缚电荷分布,这些电荷分布一般是不知道或不可测的,它们产生一个附加场 ,总场为 。因此要确定空间电场,在许多情况下不能用上式,而需用其他方法。,二、高斯定理与静电场的散度方程,静电场对任一闭合曲面的通量等于面内电荷与真空介电常数比值。,它适用求解对称性很高情况下的静电场。,它反映了电荷分布与电场强度在给定区域内的关系,不反映电场的点与点间的关系。,电场是有源场,源为电荷。,1.高斯,定理,E,r,v,高斯定理的证明(不要求掌握),+,E,dS,利用点电荷可以验证高斯定理,2.,静电场的散度方程,它又称为静电场高斯定理的微分形式。,它说明空间某点的电场强度的散度只与该点电荷体密度有关,与其它点的无关。,它刻划静电场在空间各点发散和会聚情况。,它仅适用于连续分布的区域,在分界面上,电场强度一般不连续,因而不能使用。,由于电场强度有三个分量,仅此方程不能确定,还要知道静电场的旋度方程。,三、静电场的环路定理与旋度方程,1.,环路定理,静电场对任意闭合回路的环量为零。,说明在回路内无涡旋存在,静电场是不闭合的。,证明(不要求),又称为环路定理的微分形式,仅适用静电场。,它说明静电场为无旋场,电力线永不闭合。,在分界面上电场强度一般不连续,旋度方程,不适用,只能用环路定理。,电场强度有三个分量方程,但只有两个独立,的方程。,?,2、旋度方程,四、静电场的基本方程,微分形式,积分形式,物理意义:反映电荷激发电场及电场内部联系的规律性,物理图像:电荷是电场的源,静电场是有源无旋场,例 题,电荷均匀分布于半径为a的球体内,求各点场强的散度和旋度。,a,.P,.P,r,解:电荷体密度为,,半径a,,0,由高斯定理,电场为:,第一章第二节,电流与磁场,2,电流和静磁场,一、电荷守恒定律,1,、电流强度和电流密度(矢量),I,单位时间通过空间任意曲面的电量(单位:安培),方向:沿导体内一点电荷流动的方向,大小:单位时间垂直通过单位面积的电量,两者关系:,2,、,电荷守恒的实验定律,语言描述:封闭系统内的总电荷严格保持不变。对于开放系统,单位时间流出区域,V,的电荷总量等于,V,内电量的减少率。,一般情况积分形式,全空间总电量不随时间变化,一般情况微分形式,反映空间某点电流与电荷之间的关系,电流线一般不闭合,若空间各点电荷与时间无关,则为稳恒电流。,流出为正,流入为负,热能:从机械能转化认识热能并得到热能的量度。,即使是无界空间中的电磁场问题,该无界空间也可能是由多种不同介质组成的,不同介质的交界面和无穷远界面上电磁场构成了边界条件。,设一带电体由一种粒子组成,在电磁场中运动,电荷密度为,引入电磁场能量、能流并讨论电磁能量的传输。,(2)不均匀介质或由多种不同结构物质混合而成的介质,可出现极化电荷。,极化使介质内部或表面上出现的电荷称为束缚电荷。,介质的磁化:介质中分子或原子内的电子运动形成分子电流,微观上形成不规则分布的磁偶极矩。,四、静电场的基本方程,洛伦兹假设变化电磁场上述公式仍然成立,近代物理实验证实了该式的正确。,3、电位移矢量的引入,找出问题,提出假设,总结真空中麦氏方程;,它仅在产生磁场上与传导电流相同,二、磁场以及有关的两个定律,磁场:通电导线间有相互作用力。与静电场类比,假定导线周围存在着场,该场与永久磁铁产生的磁场性质类似,因此称为磁场。磁场也是物质存在的形式,用磁感应强度来描述。,毕奥萨伐尔定律(电流决定磁场的实验定律),闭合导线,闭合导体,3,、安培作用力定律,闭合导体,两电流元之间的相互作用力是否满足牛顿第三定律?,结论:,两电流元之间的相互作用力不满足牛顿第三定律。但两通电闭合导体之间满足第三定律。,闭合导线,两电流元之间的相互作用力不满足牛顿第三定律。但两通电闭合导体之间满足第三定律。,两电流元之间的相互作用力,原因:不存在两个独立的电流元,只存在闭合回路。,两通电闭合回路之间的相互作用力,它反应了电流与磁感应强度在某区域内的关系,对于某些具有较高对称性的问题可利用该定理求解。,三、安培环路定理和磁场的旋度方程,式中,I,为,L,所环连的电流强度,1、环路定理,1)稳恒磁场为有旋场。,2)应用该公式必须在电流连续分布区域,,不连续区只能用环路定理;,3)该方程可直接由毕萨定律推出(P12);,4)它有三个分量方程,但只有两个独立;,5)它只对稳恒电流磁场成立。,?,2、旋度方程,四、磁场的通量和散度方程,毕奥-萨伐尔定律,2、磁场的散度方程,1),静磁场为无源场(相对通量而言),2),它不仅适用于静磁场,也适用于变化磁场。,1、,磁场的通量,五静磁场的基本方程,微分形式:,积分形式:,反映静磁场为无源有旋场,磁力线总闭合。它的激发源仍然是运动的电荷。,注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。,第一章第三节,麦克斯韦方程组,3,麦克斯韦方程组,本节学习向导,:,通过麦克斯韦方程的建立过程,深刻理解理论物理学的特点;了解麦克斯韦方程在电磁场理论中的重要地位;了解麦克斯韦方程组的实验基础;从麦克斯韦方程出发可以得到那些结果和预言。,一、电磁感应定律,电磁感应现象,1831年法拉第发现:当一个导体回路中电流变化时,在附近的另一个回路中将出现感应电流。由此他总结了这一现象服从的规律:,为什么要加负号?,物理机制,动生可以认为电荷受到磁场的洛伦兹力,因此产生电动势;感生情况回路不动,应该是受到电场力的作用。因为无外电动势,该电场不是由静止电荷产生,因此称为感生电场(对电荷有作用力是电场的本质,因此它与静电场在这一点上无本质差别),磁通变化的三种方式,:,a),回路相对磁场做机械运动,即磁场与时间无关,,磁通量随时间变化,一般称为动生电动势;,b),回路静止不动,但磁场变化,称为感生电动势;,c),上面两种情况同时存在。,电磁感应现象的实质:变化磁场激发电场,二、总电场的旋度和散度方程,感生电场与感生电动势的关系,感生电场的旋度方程,1)它反映感生电场为有旋场(又称漩涡场),与静电场,本质不同。,2)它反映变化磁场与它激发的变化电场间的关系,是电,磁感应定律的微分形式。,感生电场的散度方程,总电场的旋度与散度方程,假定电荷分布激发的场为 满足:,总电场为:,因此得到总电场满足的方程:,变化电场是有旋有源场,它不仅可以由电荷直接激发,也可以由变化磁场激发。,感生电场是有旋无源场,由于感生电场不是由电荷直接激发,可以认为,三、位移电流假设,变化电场激发磁场猜想,变化磁场产生感生电场,变化电场产生磁场?,?,位移电流假设,对于静磁场:与 相一致,对变化场它与电荷守恒发生矛盾,麦克斯韦假设存在位移电流,总电流:,类比?,位移电流的表达式是什么?,麦克斯韦在多方面考虑后取,它仅在产生磁场上与传导电流相同,四、总磁场的旋度和散度方程,(,1,),为总磁感应强度,(2)若 ,仍为有旋场,(3)可认为磁场的一部分直接由变化电场激发,旋度,方程,散度,方程,与变化磁场产生的感生电场比较,后人发现由,可直接导出上述结果,五、真空中的电磁场基本方程,麦克斯韦方程组,对方程组的分析与讨论,(,1,),真空中电磁场的基本方程,揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。微分形式反映点与点之间场的联系,积分方程反映场的局域特性。,(2)线性偏微分方程,满足叠加原理,它们有6个未知变量()、8个标量方程,因此有两个不独立。一般认为后两个方程为附加条件,它可由前两个方程导出。,具体求解方程还要考虑空间中的介质,导体以及各种边界上的条件。,(,3,)预测空间电磁场以电磁波的形式传播,在电荷、电流为零的空间(称为自由空间),电磁波,(4),方程通过电磁感应定律加位移电流假设导出,它们的正确性是由方程与实际情况相比较验证的。,电场与磁场之间的相互激发可以脱离电荷和电流而发生。电场与磁场的相互联系,相互激发,时间上周而复始,空间上交链重复,这一过程预示着波动是电磁场的基本运动形态。,他的这一预言在,Maxwell,去世后(,1879,年)不到10年的时间内,由德国科学家,Hertz,通过实验证实。从而证明了Maxwell的假设和推广的正确性。,六、洛伦兹力公式,洛伦兹假设变化电磁场上述公式仍然成立,近代物理实验证实了该式的正确。,对于运动点电荷,力密度,4,介质的电磁性质,本节学习向导,:,1、介质的极化与磁化,2、介质中的麦克斯韦方程,3、介质的电磁性质,第一章第四节,介质的电磁性质,一、介质的极化和磁化,介质:,介质由分子组成,分子内部有带正电的原子核及核外电子,内部存在不规则而迅变的微观电磁场。,宏观物理量:,因我们仅讨论宏观电磁场,用介质内大量分子的小体元内的平均值表示的物理量称为宏观物理量(小体元在宏观上无限小,在微观上无限大)。在没有外力场时,介质内宏观电荷、电流分布不出现,宏观场为零。,分子分类,(1),有极分子:无外场时,正负电中心不重合,有分子电偶极矩。但因取向无矩,不表现宏观电矩。,(2)无极分子:无外场时,正负电中心重合,无分子电偶极矩,也无宏观电矩。,(3)分子电流:介质分子内部电子运动可以认为构成微观电流。无外场时,分子电流取向无规则,不出现宏观电流分布。,介质的极化和磁化,极化使介质内部或表面上出现的电荷称为束缚电荷。,介质的极化:介质中分子和原子的正负电荷在外加电场力的作用下发生小的位移,形成定向排列的电偶极矩;或原子、分子固有电偶极矩不规则的分布,在外场作用下形成规则排列。,但因取向无矩,不表现宏观电矩。,三、介质存在时磁场的散度和旋度方程,3、电位移矢量的引入,大小:单位时间垂直通过单位面积的电量,对于开放系统,单位时间流出区域V的电荷总量等于V内电量的减少率。,它又称为静电场高斯定理的微分形式。,电磁场对物体所做功转化为物体的机械能或转化为热能(改变速度或焦耳热),变化磁场产生感生电场,变化电场是有旋有源场,它不仅可以由电荷直接激发,也可以由变化磁场激发。,微分方程不能适用,但可用积分方程。,因为无外电动势,该电场不是由静止电荷产生,因此称为感生电场(对电荷有作用力是电场的本质,因此它与静电场在这一点上无本质差别),反映空间某点电流与电荷之间的关系,电流线一般不闭合,(1)线性均匀介质中,极化迁出的电荷与迁入的电荷相等,不出现极化电荷分布。,它反映了电荷分布与电场强度在给定区域内的关系,不反映电场的点与点间的关系。,反映静磁场为无源有旋场,磁力线总闭合。,证明(不要求),(1)真空中电磁场的基本方程,介质的磁化:介质中分子或原子内的电子运动形成分子电流,微观上形成不规则分布的磁偶极矩。在外磁场力作用下,磁偶极矩定向排列,形成宏观上的磁偶极矩。,传导电流:介质中可自由移动的带电粒子,在外场力作用下,导致带电粒子的定向运动,形成电流。,二、介质存在时电场的散度和旋度方程,2、极化电荷密度,介质1,p,i,=,p,P,=,n,p,由于极化,分子或原子的正负电荷发生位移,体积元内一部分电荷因极化而迁移到的外部,同时外部也有电荷迁移到体积元内部。因此体积元内部有可能出现净余的电荷(又称为束缚电荷)。,(3)在两种不同均匀介质交界面上的一个很薄的层内,由于两种物质的极化强度不同,存在极化面电荷分布。,(1)线性均匀介质中,极化迁出的电荷与迁入的电荷相等,不出现极化电荷分布。,(2)不均匀介质或由多种不同结构物质混合而成的介质,可出现极化电荷。,3,、电位移矢量的引入,存在束缚电荷的情况下,总电场包含了束缚电荷产生的场,一般情况自由电荷密度可知,但束缚电荷难以得到(即使实验得到极化强度,它的散度也不易求得)为计算方便,要在场方程中消掉束缚电荷密度分布。,它仅起辅助作用并不代表场量。它在具体应用中与电场强度的关系可由实验或计算来确定。,4、电场的散度、旋度方程,三、介质存在时磁场的散度和旋度方程,2、磁化电流密度(矢量),m,i,=m,M=,n,m,当介质被磁化后,由于分子电流的不均匀会出现宏观电流,称为磁化电流。,3,、极化电流密度,在介质交界面上的一个薄的层内,存在磁化面电流分布,4、诱导电流,5、磁场强度,实质是电场变化率,介质中的磁场由 共同决定,磁场强度,6,、关于磁场的散度、旋度方程,四、介质中的麦克斯韦方程,2,、,12,个未知量,,6,个独立方程,求解必须给出 与 ,,与 的关系。,1、介质中普适的电磁场基本方程,可用于任意介质,,当 ,回到真空情况。,五、介质中的电磁性质方程,1,、电磁场较弱,首先讨论非铁磁介质,均呈线性关系,各向同性均匀介质,极化率,电容率,相对电容率,磁化率,磁导率,相对磁导率,各向异性介质(如晶体),磁导率张量,各向异性介质电性质方程矩阵形式,电容率张量,2,、电磁场较强时,电位移矢量与电场强度的关系为非线性关系,对于铁磁物质,一般情况不仅非线性,而且非单值,在电磁场频率很高时,情况更复杂,介质会出现色散现象。即使在电磁场较弱的情况,,、,表现为频率的函数。,3、导体中的欧姆定律,带电粒子,晶格点阵,电导率,适用于所有情况,第一章第五节,电磁场的边值关系,5,电磁场的边值关系,一、法线分量的边值关系,二、切向分量的边值关系,三、其它边值关系,内容提要:,1,、,实际电磁场问题都是在一定的空间和时间范围内发生的,它有起始状态(静态电磁场例外)和边界状态。即使是无界空间中的电磁场问题,该无界空间也可能是由多种不同介质组成的,不同介质的交界面和无穷远界面上电磁场构成了边界条件。,2、在不同介质分界面处,由于可能存在电荷电流分布等情况,使电磁场量产生突变。微分方程不能适用,但可用积分方程。从积分方程出发,可以得到在分界面上场量间关系,这称为边值关系。它是方程积分形式在界面上的具体化。只有知道了边值关系,才能求解多介质情况下场方程的解。,边界上的电磁场问题,1、,和,的法向分量边值关系,:,一、电磁场量的法线方向分量的边值关系,总不连续,2、的法向分量边值关系,对均匀各项同性线性介质,二、切向分量边值关系,1、,的边值关系,0,0,可导出,的切向边值关系,:,2,、,的切向边值关系,但,的,切向,分量,一般不连续。,三、其它边值关系,边值关系一般表达式,理想介质边值关系表达式,一侧为导体的边,值关系表达式,介质1,介质2,例题:,1、已知均匀各项同性线性介质,中放一导体,证明导体表面静电场强度与表面垂直,并求分界面上自由电荷、束缚电荷分布。,解:在静电平衡时,内部,与表面垂直!,2.,有一均匀磁化介质球,磁化强度为,常矢量M,求磁化电流分布。,解:,只有面电流分布!,3、,无限大平,行板电,容器,内,有两层介质,,板,上面,,,求,电,场和束缚电荷分布。,电荷分为,解:,(1),根据对称性,电场沿,方向,且为,均匀场,极板为导体,在表面处,,(2),两,介质分界面上电荷分布,导体,第一章第六节,电磁场的能量与能流,6 电磁场的能量和能流,能量守恒与转化,能量密度、能流密度矢量(重点),机械功与场能的变化关系,内容提要:,电磁场能量守恒公式(重点),一、能量守恒与转化,能量:,物质运动强度的量度,表示物体做功的物理量。,主要形式:机械能、热能、化学能、电磁能、原子能。,能量守恒与转化:,能量在不同形式之间可以相互转化,但总量保持不变。,电磁能的特点:,电磁场作为一种物质,具有能量和动量,电磁场弥散于全空间,电磁能也应弥散于全空间。,认识一种新物质的能量从能量转化入手,热能:从机械能转化认识热能并得到热能的量度。,电磁能:从电磁场对带电体系做功来认识电磁能。,二、机械功与场能的变化关系,1、电磁场对运动带电体系所作的功,带电体受电磁场的洛伦兹力(力密度),设一带电体由一种粒子组成,在电磁场中运动,电荷密度为,,,运动速度为,在,间隔内,,力,对体元,所做元功:,d t,电磁场,对整个带电体单位时间所做功:,电磁场对物体所做功转化为物体的机械能或转化为热能(改变速度或焦耳热),2、功与场量的关系,利用,三、能量密度与能流密度矢量,1,、能量密度,带电体能量的增加率,电磁场能量,减少率,因此,w,为单位体积的能量-能量密度,。,单位体积能量的增加率,称为能流密度矢量(玻印亭矢量)它表示单位时间、垂直通过单位面积的能量,用来描述能量的传播。,均匀各项同性线性介质,中的能量密度,四、电磁场能量守恒公式,电磁场单位时间对带电粒子做的功等于,V,内电磁场能量的减少率与单位时间流入,V,内的电磁能量之和。,对于全空间电磁场对带电体做功的功率恒等于电磁场能量的减少率。,电磁场能量守恒的微分形式,电磁场能量守恒的积分形式,V,五、电磁场能量的传输,电磁场的能量不在导体中传播而是在场中传播,J,E,S,H,习题:书中例题,思考题:导线的作用?,能否不用导线来传递能量?,习题,、,2,、,4,、,6,5,、,10,7,、,9,11,、,12,、,13,谢谢观看,谢谢观看,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服