资源描述
,函数与导数,回扣,7,必考知识,1.,判断函数单调性的常用方法,(1),能画出图象的,一般用数形结合法去观察,.,(2),由基本初等函数通过加减运算或复合而成的函数,常转化为基本初等函数的单调性判断问题,.,(3),对于解析式较复杂的,一般用导数,.,(4),对于抽象函数,一般用定义法,.,2.,判断函数零点的常用方法,(1),解方程法:若对应方程,f,(,x,),0,可解,通过解方程,则方程有几个解就对应函数有几个零点,.,(2),函数零点的存在性定理法:利用定理不仅要判断函数图象在区间,a,,,b,上是连续不断的曲线,且,f,(,a,),f,(,b,)0,,且,a,1),恒过,点,,,y,log,a,x,(,a,0,,且,a,1),恒过,点,.,(2),单调性:当,a,1,时,,y,a,x,在,R,上,单调,;,y,log,a,x,在,上,单调递增;,当,0,a,0,,,f,(,x,)0,时向左平移,,c,0,时向上平移,,b,1),或缩短,(0,a,0),的图象,.,(2),把,y,f,(,x,),的图象上各点的横坐标伸长,(0,b,1),到原来的,,,而纵坐标不变,得到函数,y,f,(,bx,)(,b,0),的图象,.,6.,抽象函数的性质与特殊函数模型的对照表,抽象函数的性质,特殊函数模型,(1),f,(,x,),f,(,y,),f,(,x,y,)(,x,,,y,R,),,,指数函数,f,(,x,),a,x,(,a,0,,,a,1),(1),f,(,xy,),f,(,x,),f,(,y,)(,x,0,,,y,0),,,对数函数,f,(,x,),log,a,x,(,a,0,,,a,1),(1),f,(,xy,),f,(,x,),f,(,y,)(,x,,,y,R,),,,幂函数,f,(,x,),x,n,f,(,x,y,),f,(,x,),g,(,y,),g,(,x,),f,(,y,),三角函数,f,(,x,),sin,x,,,g,(,x,),cos,x,1,2,3,4,5,6,经典重温,7,8,9,10,1,2,3,4,5,6,7,8,9,10,A.,2,B.4 C.2 D,.,4,1,2,3,4,5,6,7,8,9,10,3.,已知函数,f,(,x,),(,x,2,2)(,ax,2,b,),,且,f,(1),2,,则,f,(,1),等于,A.,1,B,.,2,C.2 D.0,解析,f,(,x,),(,x,2,2)(,ax,2,b,),ax,4,(2,a,b,),x,2,2,b,,,则,f,(,x,),4,ax,3,2(2,a,b,),x,为奇函数,,所以,f,(,1),f,(1),2.,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,当,x,0,,,),时,,1,2,3,4,5,6,7,8,9,10,5.,若函数,f,(,x,),6,x,e,x,2,ax,3,3,ax,2,存在三个极值点,则,a,的取值范围,为,1,2,3,4,5,6,7,8,9,10,解析,由题意得,f,(,x,),6e,x,6,x,e,x,6,ax,2,6,ax,6(,x,1)(e,x,ax,).,可知,x,1,为,f,(,x,),的一个零点,,若,f,(,x,),存在三个极值点,,,则,只需,e,x,ax,0,有两个不等实根,且两实根均不等于,1,,,即,g,(,x,),e,x,与,h,(,x,),ax,有两个横坐标不等于,1,的交点,,当,h,(,x,),与,g,(,x,),相切时,设切点坐标为,(,x,0,,,),,,g,(,x,0,),a,,,又,a,,,x,0,1,,,a,e,,,1,2,3,4,5,6,7,8,9,10,结合图象,(,图略,),可知,,,当,a,(e,,,),时,,e,x,ax,0,有两个不等实根,且两实根均不等于,1,,,若,f,(,x,),存在三个极值点,则,a,(e,,,).,6.,已知函数,f,(,x,),是定义在,R,上的奇函数,且,f,(,x,2),f,(,x,).,当,0,x,1,时,,f,(,x,),x,3,ax,1,,则实数,a,的值为,_.,1,2,3,4,5,6,7,8,9,10,解析,f,(,x,),是定义在,R,上的奇函数,且,f,(,x,2),f,(,x,),,,当,x,1,时,,f,(,1,2),f,(,1),f,(1),,,即,f,(1),f,(1),,则,f,(1),0,,,当,0,x,1,时,,f,(,x,),x,3,ax,1,,,f,(1),1,a,1,0,,得,a,2.,2,7.,曲线,y,x,2,x,ln,x,上任意一点,P,到直线,2,x,y,2,0,的最短距离为,_.,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,解析,点,P,是曲线,y,x,2,x,ln,x,上任意一点,,当过点,P,的切线和直线,2,x,y,2,0,平行时,,点,P,到直线,2,x,y,2,0,的距离最小,.,直线,2,x,y,2,0,的斜率等于,2,,,1,2,3,4,5,6,7,8,9,10,故曲线,y,x,2,x,ln,x,上和直线,2,x,y,2,0,平行的切线经过的切点坐标为,(1,2),,,8.,已知函数,f,(,x,),若,函数,g,(,x,),f,(,x,),m,有,3,个零点,则,实,数,m,的取值范围是,_.,1,2,3,4,5,6,7,8,9,10,(0,1),由于函数,g,(,x,),f,(,x,),m,有,3,个零点,,,结合,图象得,0,m,1,,即,m,(0,1).,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,则,g,(,x,),ax,2,1,,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,(2),若,f,(,x,),0,,求实数,a,的取值范围,.,1,2,3,4,5,6,7,8,9,10,则,f,(,x,),f,(0),0,,即,f,(,x,),0,;,1,2,3,4,5,6,7,8,9,10,则,f,(,x,),f,(0),0,,显然成立;,即当,x,(0,,,x,0,),时,,f,(,x,)0,,,即当,x,(0,,,x,0,),时,,f,(,x,)0,时,,x,2,3,x,1,1,,,f,(,x,),1).,当,x,1,时,,h,(,x,)0,恒成立,,h,(,x,),单调递减,.,又,h,(,1),0,,所以,h,(,x,),1,,,f,(,x,),1,,使得当,x,(,1,,,x,0,),时,恒有,f,(,x,),g,(,x,),成立,试求,k,的取值范围,.,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,由,(2),知,当,k,2,时,,f,(,x,),1,2ln(,x,2),(,x,1),2,2,时,对于,x,1,,,x,10,,,此时,2(,x,1),k,(,x,1).,2ln(,x,2),(,x,1),2,2(,x,1),k,(,x,1),,,即,f,(,x,),g,(,x,),恒成立,不存在满足条件的,x,0,;,当,k,2,时,令,t,(,x,),2,x,2,(,k,6),x,(2,k,2),,,可知,t,(,x,),与,h,(,x,),符号相同,,,1,2,3,4,5,6,7,8,9,10,当,x,(,x,0,,,),时,,t,(,x,)0,,,h,(,x,),h,(,1),0,,,即,f,(,x,),g,(,x,)0,恒成立,.,综上,,k,的取值范围为,(,,,2).,本课结束,
展开阅读全文