收藏 分销(赏)

2025年四川省成都市天府七中学初三3月月考(数学试题理)含解析.doc

上传人:cg****1 文档编号:12263651 上传时间:2025-09-29 格式:DOC 页数:18 大小:631KB 下载积分:10 金币
下载 相关 举报
2025年四川省成都市天府七中学初三3月月考(数学试题理)含解析.doc_第1页
第1页 / 共18页
2025年四川省成都市天府七中学初三3月月考(数学试题理)含解析.doc_第2页
第2页 / 共18页


点击查看更多>>
资源描述
2025年四川省成都市天府七中学初三3月月考(数学试题理) 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.在下面的四个几何体中,左视图与主视图不相同的几何体是(  ) A. B. C. D. 2.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  ) A.7 B.8 C.9 D.10 3.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( ) A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍 C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 % 4.下列运算正确的是(  ) A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4 5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是 A. B. C. D. 6.下列关于事件发生可能性的表述,正确的是(  ) A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件 B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖 C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品 D.掷两枚硬币,朝上的一面是一正面一反面的概率为 7.如图所示的几何体,它的左视图是( ) A. B. C. D. 8.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  ) A.若这5次成绩的中位数为8,则x=8 B.若这5次成绩的众数是8,则x=8 C.若这5次成绩的方差为8,则x=8 D.若这5次成绩的平均成绩是8,则x=8 9.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( ) A.①②③ B.①③⑤ C.②③④ D.②④⑤ 10.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  ) A.2 B.﹣2 C.4 D.﹣4 二、填空题(共7小题,每小题3分,满分21分) 11.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__. 12.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____. 13.如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____. 14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________. 15.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____. 16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____. 17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 三、解答题(共7小题,满分69分) 18.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元. 19.(5分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1 (2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取. 20.(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里. (1)求B点到直线CA的距离; (2)执法船从A到D航行了多少海里?(结果保留根号) 21.(10分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点. 求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点. ①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围. 22.(10分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1 23.(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题: (1)2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图. (2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游? (3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果. 24.(14分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少? 参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故A选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符; C、球的左视图与主视图都是圆,故C选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意; 故选B. 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图. 2、C 【解析】 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【详解】 根据三视图知,该几何体中小正方体的分布情况如下图所示: 所以组成这个几何体的小正方体个数最多为9个, 故选C. 考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查. 3、C 【解析】 【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得. 【详解】观察直方图,由图可知: A. 最喜欢足球的人数最多,故A选项错误; B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误; C. 全班共有12+20+8+4+6=50名学生,故C选项正确; D. 最喜欢田径的人数占总人数的=8 %,故D选项错误, 故选C. 【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键. 4、D 【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4 ,正确,故选D. 5、A 【解析】 分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。 6、C 【解析】 根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可. 【详解】 解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误. B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误. C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确. D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误. 故选:C. 考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比. 7、A 【解析】 从左面观察几何体,能够看到的线用实线,看不到的线用虚线. 【详解】 从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线, 故选:A. 本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键. 8、D 【解析】 根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D. 【详解】 A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误; B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误; C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误; D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确; 故选D. 本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 9、D 【解析】 根据实数的运算法则即可一一判断求解. 【详解】 ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确. 故选D. 10、B 【解析】 利用待定系数法求出m,再结合函数的性质即可解决问题. 【详解】 解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4), ∴m2=4, ∴m=±2, ∵y的值随x值的增大而减小, ∴m<0, ∴m=﹣2, 故选:B. 本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 二、填空题(共7小题,每小题3分,满分21分) 11、2 【解析】 将PA+PB转化为PA+PC的值即可求出最小值. 【详解】 解: E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形, B点关于EF的对称点C点, AC即为PA+PB的最小值, ∠BCD=, 对角线AC平分∠BCD, ∠ABC=, ZBCA=, ∠BAC=, AD=2, PA+PB的最小值=. 故答案为: . 求PA+PB的最小值, PA+PB不能直接求, 可考虑转化PA+PC的值,从而找出其最小值求解. 12、 【解析】 若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围. 【详解】 解:∵方程有两个实数根, ∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0, 解得:k≤且k≠1, 故答案为k≤且k≠1. 此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根. 13、4 【解析】 分别过点、点作的垂线,垂足分别为点、点,根据是的中点得到为的中位线,然后设,,,根据,得到,最后根据面积求得,从而求得. 【详解】 分别过点、点作的垂线,垂足分别为点、点,如图 点为的中点, 为的中位线, ,,, , , , , , . 故答案为:. 本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变. 14、1 【解析】 首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案. 【详解】 如图,连接BE, ∵四边形BCEK是正方形, ∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK, ∴BF=CF, 根据题意得:AC∥BK, ∴△ACO∽△BKO, ∴KO:CO=BK:AC=1:3, ∴KO:KF=1:1, ∴KO=OF=CF=BF, 在Rt△PBF中,tan∠BOF==1, ∵∠AOD=∠BOF, ∴tan∠AOD=1. 故答案为1 此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用. 15、m<﹣1. 【解析】 根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案. 【详解】 ∵关于x的方程x2﹣2x﹣m=0没有实数根, ∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0, 解得:m<﹣1, 故答案为:m<﹣1. 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 16、1 【解析】 连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍. 【详解】 连接AC交OB于D. 四边形OABC是菱形, . 点A在反比例函数的图象上, 的面积, 菱形OABC的面积=的面积=1. 本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即. 17、4.4×1 【解析】 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【详解】 4400000000的小数点向左移动9位得到4.4, 所以4400000000用科学记数法可表示为:4.4×1, 故答案为4.4×1. 本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 三、解答题(共7小题,满分69分) 18、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元. 【解析】 (1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可; (2)构建方程即可解决问题; (3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题. 【详解】 (1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2. (2)由题意:20=﹣x2+32x﹣2. 解得:x=16, 答:该产品第一年的售价是16元. (3)由题意:7≤x≤16, W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150, ∵7≤x≤16, ∴x=7时,W2有最小值,最小值=18(万元), 答:该公司第二年的利润W2至少为18万元. 本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题. 19、(1)-1(1)-1 【解析】 (1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可; (1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可. 【详解】 (1)原式=1+3×+1﹣5 =1++1﹣5 =﹣1; (1)原式= = = =﹣, 解不等式组得:-1≤x 则不等式组的整数解为﹣1、0、1、1, ∵x(x+1)≠0且x﹣1≠0, ∴x≠0且x≠±1, ∴x=1, 则原式=﹣=﹣1. 本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件. 20、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里. 【解析】 (1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长; (2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长. 【详解】 解:(1)过点B作BH⊥CA交CA的延长线于点H, ∵∠MBC=60°, ∴∠CBA=30°, ∵∠NAD=30°, ∴∠BAC=120°, ∴∠BCA=180°﹣∠BAC﹣∠CBA=30°, ∴BH=BC×sin∠BCA=150×=75(海里). 答:B点到直线CA的距离是75海里; (2)∵BD=75海里,BH=75海里, ∴DH==75(海里), ∵∠BAH=180°﹣∠BAC=60°, 在Rt△ABH中,tan∠BAH==, ∴AH=25, ∴AD=DH﹣AH=(75﹣25)(海里). 答:执法船从A到D航行了(75﹣25)海里. 本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键. 21、(1),;(2)① 3,② . 【解析】 (1)将代入可求出a,将A点坐标代入可求出k; (2)①根据题意画出函数图像,可直接写出区域内的整点个数; ②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可. 【详解】 解:(1)将代入得a=4 将代入,得 (2)①区域内的整点个数是3 ②∵直线是过点且平行于直线 ∴直线的表达式为 当时,即线段PM上有整点 ∴ 本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键. 22、1+ 【解析】 分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案. 详解:原式=2×-1+-1+2 =1+. 点睛:此题主要考查了实数运算,正确化简各数是解题关键. 23、(1)50,108°,补图见解析;(2)9.6;(3). 【解析】 (1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图; (2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数; (3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率. 【详解】 解:(1)该市周边景点共接待游客数为:15÷30%=50(万人), A景点所对应的圆心角的度数是:30%×360°=108°, B景点接待游客数为:50×24%=12(万人), 补全条形统计图如下: (2)∵E景点接待游客数所占的百分比为:×100%=12%, ∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人); (3)画树状图可得: ∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种, ∴同时选择去同一个景点的概率=. 本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图. 24、(1)答案见解析;(2) 【解析】 分析:(1)直接列举出所有可能的结果即可. (2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解. 详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐. 共有6种等可能的结果数; (2)画树状图为: 共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服