资源描述
哈尔滨市重点中学2025-2026学年数学高三上期末检测模拟试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.使得的展开式中含有常数项的最小的n为( )
A. B. C. D.
2.已知复数和复数,则为
A. B. C. D.
3.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
4.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为( )
A. B.
C. D.
5.若为纯虚数,则z=( )
A. B.6i C. D.20
6.对于任意,函数满足,且当时,函数.若,则大小关系是( )
A. B. C. D.
7.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )
A. B. C. D.
8.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为( )
A. B.
C. D.
9.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.若数列为等差数列,且满足,为数列的前项和,则( )
A. B. C. D.
11.如图,在中,,是上一点,若,则实数的值为( )
A. B. C. D.
12.已知角的终边经过点,则
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若,则实数______.
14.若x,y均为正数,且,则的最小值为________.
15.已知函数,则的值为 ____
16.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)等差数列的前项和为,已知,.
(Ⅰ)求数列的通项公式及前项和为;
(Ⅱ)设为数列的前项的和,求证:.
18.(12分)设函数,是函数的导数.
(1)若,证明在区间上没有零点;
(2)在上恒成立,求的取值范围.
19.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.
(1)求证: 是的中点;
(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
20.(12分)已知,函数有最小值7.
(1)求的值;
(2)设,,求证:.
21.(12分)已知函数.
(1)当时,求函数的值域;
(2)的角的对边分别为且,,求边上的高的最大值.
22.(10分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.
(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;
(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B
【考点定位】本题考查二项式定理的应用.
2.C
【解析】
利用复数的三角形式的乘法运算法则即可得出.
【详解】
z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.
故答案为C.
熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.
3.D
【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.
【详解】
A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.
B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.
C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.
D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.
故选:D
本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.
4.A
【解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.
【详解】
由已知,得,过B作x轴的垂线,垂足为T,故,
又所以,即,
所以双曲线的离心率.
故选:A.
本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.
5.C
【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.
【详解】
∵为纯虚数,
∴且
得,此时
故选:C.
本题考查复数的概念与运算,属基础题.
6.A
【解析】
由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.
【详解】
对于任意,函数满足,
因为函数关于点对称,
当时,是单调增函数,
所以在定义域上是单调增函数.
因为,所以,
.
故选:A.
本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..
7.D
【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.
【详解】
如图,设双曲线的右焦点为,连接,连接并延长交右支于.
因为,故四边形为平行四边形,故.
又双曲线为中心对称图形,故.
设,则,故,故.
因为为直角三角形,故,解得.
在中,有,所以.
故选:D.
本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.
8.C
【解析】
根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.
【详解】
函数,
由辅助角公式化简可得,
因为为函数图象的一条对称轴,
代入可得,
即,化简可解得,
即,
所以
将函数的图象向右平行移动个单位长度可得,
则,
故选:C.
本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.
9.D
【解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.
【详解】
解:由,得,
所以,其在复平面内对应的点为,在第四象限
故选:D
此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.
10.B
【解析】
利用等差数列性质,若,则 求出,再利用等差数列前项和公式得
【详解】
解:因为 ,由等差数列性质,若,则得,
.
为数列的前项和,则.
故选:.
本题考查等差数列性质与等差数列前项和.
(1)如果为等差数列,若,则 .
(2)要注意等差数列前项和公式的灵活应用,如.
11.C
【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.
【详解】
由题意及图,,
又,,所以,∴(1﹣m),
又t,所以,解得m,t,
故选C.
本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.
12.D
【解析】
因为角的终边经过点,所以,则,
即.故选D.
二、填空题:本题共4小题,每小题5分,共20分。
13.-2
【解析】
根据向量坐标运算可求得,根据平行关系可构造方程求得结果.
【详解】
由题意得:
,解得:
本题正确结果:
本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.
14.4
【解析】
由基本不等式可得,则,即可解得.
【详解】
方法一:,当且仅当时取等.
方法二:因为,所以,
所以,当且仅当时取等.
故答案为:.
本题考查基本不等式在求最小值中的应用,考查学生对基本不等式的灵活使用,难度较易.
15.4
【解析】
根据的正负值,代入对应的函数解析式求解即可.
【详解】
解:
.
故答案为:.
本题考查分段函数函数值的求解,是基础题.
16.20
【解析】
由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.
【详解】
由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆
柱组合而成,其体积为.
故答案为:20.
本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ), (Ⅱ)见解析
【解析】
(Ⅰ)根据等差数列公式直接计算得到答案.
(Ⅱ),根据裂项求和法计算得到得到证明.
【详解】
(Ⅰ)等差数列的公差为,由,得,,
即,,解得,.
∴,.
(Ⅱ),∴,
∴,即.
本题考查了等差数列的基本量的计算,裂项求和,意在考查学生对于数列公式方法的灵活运用.
18.(1)证明见解析(2)
【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,
函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;
(2)由题意可将转化为,构造函数,
利用导数讨论研究其在上的单调性,由,即可求出的取值范围.
【详解】
(1)若,则,,
设,则,,
,故函数是奇函数.
当时,,,这时,
又函数是奇函数,所以当时,.
综上,当时,函数单调递增;当时,函数单调递减.
又,,
故在区间上恒成立,所以在区间上没有零点.
(2),由,所以恒成立,
若,则,设,
.
故当时,,又,所以当时,,满足题意;
当时,有,与条件矛盾,舍去;
当时,令,则,
又,故在区间上有无穷多个零点,
设最小的零点为,
则当时,,因此在上单调递增.
,所以.
于是,当时,,得,与条件矛盾.
故的取值范围是.
本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题.
19. (1) 见解析;(2).
【解析】
试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.
试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.
(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,
轴,轴建立空间直角坐标系(如图),则各点坐标为.
设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.
20.(1).(2)见解析
【解析】
(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;
(2)由,可得,再利用基本不等式求出的最小值,即可得证;
【详解】
解:
(1)∵
,
∴当时,,解得.
(2)∵,∴,
∴,
当且仅当,即,时,等号成立.
∴.
本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.
21.(1).(2)
【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.
(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.
【详解】
解:(1)∵函数,
当时,,.
(2)中,,∴.
由余弦定理可得,当且仅当时,取等号,
即的最大值为3.
再根据,故当取得最大值3时,取得最大值为.
本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.
22.(1)见解析,40元(2)6000元
【解析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可
(2)根据(1)结果求均值.
【详解】
解:(1)由题设知可能取值为0,20,40,60,80,则
;
;
;
;
.
故的分布列为:
0
20
40
60
80
所以数学期望(元)
(2)此次促销活动后健身馆每天的营业额预计为:(元)
考查离散型随机变量的分布列及其期望的求法,中档题.
展开阅读全文