资源描述
2025年海西市重点中学数学高三上期末检测试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )
A. B. C. D.
2.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
3.下列与函数定义域和单调性都相同的函数是( )
A. B. C. D.
4.若,则“”的一个充分不必要条件是
A. B.
C.且 D.或
5.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( )
A.12 B.16 C.20 D.8
6.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )
A. B. C. D.
7.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为( )
A. B. C. D.
8.某四棱锥的三视图如图所示,该几何体的体积是( )
A.8 B. C.4 D.
9.已知非零向量满足,,且与的夹角为,则( )
A.6 B. C. D.3
10.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )
A.
B.
C.
D.
11.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是( )
A. B. C. D.
12.设集合则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知等差数列的前n项和为Sn,若,则____.
14.设常数,如果的二项展开式中项的系数为-80,那么______.
15.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.
①,使得;
②直线与直线所成角的正切值的取值范围是;
③与平面所成锐二面角的正切值为;
④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.
其中正确命题的序号是________.(写出所有正确命题的序号)
16.已知等比数列的各项都是正数,且成等差数列,则=__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.
(1)求数列和的通项公式;
(2)求数列的前项和.
18.(12分)已知均为正实数,函数的最小值为.证明:
(1);
(2).
19.(12分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.
(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?
(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.
20.(12分)已知圆:和抛物线:,为坐标原点.
(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;
(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.
21.(12分)已知,且.
(1)请给出的一组值,使得成立;
(2)证明不等式恒成立.
22.(10分)已知动点到定点的距离比到轴的距离多.
(1)求动点的轨迹的方程;
(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.
【详解】
解:因为函数为偶函数,
所以函数的图象关于对称,
因为对任意, ,都有,
所以函数在上为减函数,
则,
解得:.
即实数的取值范围是.
故选:A.
本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.
2.C
【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,
∴
又当时,令,则,即,
∴
综上所述,的取值范围为.
故选C.
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
3.C
【解析】
分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.
【详解】
函数的定义域为,在上为减函数.
A选项,的定义域为,在上为增函数,不符合.
B选项,的定义域为,不符合.
C选项,的定义域为,在上为减函数,符合.
D选项,的定义域为,不符合.
故选:C
本小题主要考查函数的定义域和单调性,属于基础题.
4.C
【解析】
,
∴,当且仅当 时取等号.
故“且 ”是“”的充分不必要条件.选C.
5.A
【解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.
【详解】
先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.
故选:A
本题考查排列中不相邻问题,常用插空法,属于基础题.
6.C
【解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.
【详解】
当时,则,,
所以,,显然当时,
,故,,若对于任意正整数不等式
恒成立,即对于任意正整数恒成立,即对于任
意正整数恒成立,设,,令,解得,
令,解得,考虑到,故有当时,单调递增,
当时,有单调递减,故数列的最大值为,
所以.
故选:C.
本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.
7.D
【解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.
【详解】
构造函数,
因为,
所以,
所以为奇函数,
当时,,所以在上单调递减,
所以在R上单调递减.
因为存在,
所以,
所以,
化简得,
所以,即
令,
因为为函数的一个零点,
所以在时有一个零点
因为当时,,
所以函数在时单调递减,
由选项知,,
又因为,
所以要使在时有一个零点,
只需使,解得,
所以a的取值范围为,故选D.
本题主要考查函数与方程的综合问题,难度较大.
8.D
【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.
【详解】
根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:
结合图中数据知,该四棱锥底面为对角线为2的正方形,
高为PA=2,
∴四棱锥的体积为.
故选:D.
本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.
9.D
【解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.
【详解】
解:非零向量,满足,可知两个向量垂直,,且与的夹角为,
说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.
故选:.
本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.
10.A
【解析】
由题意,
根据双曲线的对称性知在轴上,设,则由
得:,
因为到直线的距离小于,所以
,
即,所以双曲线渐近线斜率,故选A.
11.C
【解析】
∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)= f()
且==log34,log34<<3,∴b>a>c,
故选C
12.C
【解析】
直接求交集得到答案.
【详解】
集合,则.
故选:.
本题考查了交集运算,属于简单题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由,,成等差数列,代入可得的值.
【详解】
解:由等差数列的性质可得:,,成等差数列,
可得:,代入,
可得:,
故答案为:.
本题主要考查等差数列前n项和的性质,相对不难.
14.
【解析】
利用二项式定理的通项公式即可得出.
【详解】
的二项展开式的通项公式:,
令,解得.
∴,
解得.
故答案为:-2.
本小题主要考查根据二项式展开式的系数求参数,属于基础题.
15.①②③④
【解析】
取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取为中点,则,则即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.
【详解】
取中点,连接,则,所以,所以平面即为平面,
取中点,中点,连接,则易证得,
所以平面平面,所以点的运动轨迹为线段,平面即为平面.
①取为中点,因为是等腰三角形,所以,又因为,所以,故①正确;
②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;
当点与点或点重合时,直线与直线所成角最大,此时,
所以直线与直线所成角的正切值的取值范围是,②正确;
③与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,,所以③正确;
④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.
故答案为:①②③④
本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.
16.
【解析】
根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.
【详解】
等比数列的各项都是正数,且成等差数列,
则,
由等比数列通项公式可知,
所以,
解得或(舍),
所以由对数式运算性质可得
,
故答案为:.
本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1),;(2)
【解析】
试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.
试题解析:
(Ⅰ)设等差数列{an}的公差为d,由题意得
d=== 1.∴an=a1+(n﹣1)d=1n
设等比数列{bn﹣an}的公比为q,则
q1===8,∴q=2,
∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1, ∴bn=1n+2n﹣1
(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1, ∵数列{1n}的前n项和为n(n+1),
数列{2n﹣1}的前n项和为1×= 2n﹣1,
∴数列{bn}的前n项和为;
考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.
18.(1)证明见解析(2)证明见解析
【解析】
(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.
(2)利用基本不等式即可得到结论,注意等号成立的条件.
【详解】
(1)由题意,则函数
,
又函数的最小值为,即,
由柯西不等式得,
当且仅当时取“=”.
故.
(2)由题意,利用基本不等式可得,,,
(以上三式当且仅当时同时取“=”)
由(1)知,,
所以,将以上三式相加得
即.
本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.
19.(1)(2)详见解析
【解析】
(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.
(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并求得数学期望.
【详解】
(1)由题意,当家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,所以要想领取一台全自动洗衣机,则需要这个家庭夫妻俩在两轮游戏中至少击中三次鼓.设事件为“张明第次击中”,事件为“王慧第次击中”,,由事件的独立性和互斥性可得(张明和王慧家庭至少击中三次鼓)
,所以张明和王慧他们家庭可以领取一台全自动洗衣机的概率是.
(2)的所有可能的取值为-200,-50,100,250,400.
,
,
,
,
.
∴的分布列为
-200
-50
100
250
400
∴(分)
本小题考查概率,分布列,数学期望等概率与统计的基础知识;考查运算求解能力,推理论证能力,数据处理,应用意识.
20.(1);(2)或.
【解析】
试题分析: 直线与圆相切只需圆心到直线的距离等于圆的半径,直线与曲线相交于两点,且满足,只需数量积为0,要联立方程组设而不求,利用坐标关系及根与系数关系解题,这是解析几何常用解题方法,第二步利用直线的斜率找出坐标满足的要求,再利用两直线与圆相切,求出点的坐标.
试题解析:(1)解:设,,,由和圆相切,得.
∴.
由消去,并整理得,
∴,.
由,得,即.
∴.
∴,
∴,
∴.
∴.
∴或(舍).
当时,,故直线的方程为.
(2)设,,,则.
∴.
设,由直线和圆相切,得,
即.
设,同理可得:.
故是方程的两根,故.
由得,故.
同理,则,即.
∴,解或.
当时,;当时,.
故或.
21.(1)(答案不唯一)(2)证明见解析
【解析】
(1)找到一组符合条件的值即可;
(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.
【详解】
解析:(1)(答案不唯一)
(2)证明:由题意可知,,因为,所以.
所以,即.
因为,所以,
因为,所以,
所以.
考查不等式的证明,考查不等式的性质的应用.
22.(1)或;(2)证明见解析,定点
【解析】
(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;
(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.
【详解】
(1)设,
动点到定点的距离比到轴的距离多,
,时,解得,
时,解得.
动点的轨迹的方程为或
(2)证明:如图,设,,
由题意得(否则)且,
所以直线的斜率存在,设其方程为,
将与联立消去,得,
由韦达定理知,,①
显然,,
,,
将①式代入上式整理化简可得:,
所以,
此时,直线的方程可表示为,
即,
所以直线恒过定点.
本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.
展开阅读全文