资源描述
2025年上海市曹杨二中数学高三上期末联考试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线的渐近线方程为( )
A. B.
C. D.
2.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( )
A. B.
C.() D.()
3.已知直线与圆有公共点,则的最大值为( )
A.4 B. C. D.
4.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )
A. B. C. D.
5.已知集合,定义集合,则等于( )
A. B.
C. D.
6.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于( )
A. B.2
C.3 D.6
7.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )
A. B. C. D.
8.在等差数列中,若为前项和,,则的值是( )
A.156 B.124 C.136 D.180
9.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )
A.3.132 B.3.137 C.3.142 D.3.147
10.设集合(为实数集),,,则( )
A. B. C. D.
11.已知向量与的夹角为,,,则( )
A. B.0 C.0或 D.
12.已知函数(),若函数有三个零点,则的取值范围是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.
14.已知数列满足对任意,若,则数列的通项公式________.
15.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.
16.的展开式中项的系数为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)若函数在上单调递减,求实数的取值范围;
(2)若,求的最大值.
18.(12分)求下列函数的导数:
(1)
(2)
19.(12分)数列满足,,其前n项和为,数列的前n项积为.
(1)求和数列的通项公式;
(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.
20.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(θ为参数).
(Ⅰ)求曲线C1和C2的极坐标方程:
(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.
21.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;
(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.
22.(10分)如图,在直棱柱中,底面为菱形,,,与相交于点,与相交于点.
(1)求证:平面;
(2)求直线与平面所成的角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.
【详解】
双曲线得,则其渐近线方程为,
整理得.
故选:A
本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.
2.B
【解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.
【详解】
如图所示:连接,根据垂直平分线知,
故,故轨迹为双曲线,
,,,故,故轨迹方程为.
故选:.
本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.
3.C
【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.
【详解】
因为表示圆,
所以,解得,
因为直线与圆有公共点,
所以圆心到直线的距离,
即 ,
解得,
此时,
因为,在递增,
所以的最大值.
故选:C
本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.
4.B
【解析】
令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.
【详解】
令,则,如图
与顶多只有3个不同交点,要使关于的方程有
六个不相等的实数根,则有两个不同的根,
设由根的分布可知,
,解得.
故选:B.
本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.
5.C
【解析】
根据定义,求出,即可求出结论.
【详解】
因为集合,所以,
则,所以.
故选:C.
本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.
6.A
【解析】
由圆心到渐近线的距离等于半径列方程求解即可.
【详解】
双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=.
答案:A
本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.
7.D
【解析】
根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.
【详解】
由已知可知,点为中点,为中点,
故可得,故可得;
代入椭圆方程可得,解得,不妨取,
故可得点的坐标为,
则,易知点坐标,
将点坐标代入椭圆方程得,所以离心率为,
故选:D.
本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.
8.A
【解析】
因为,可得,根据等差数列前项和,即可求得答案.
【详解】
,
,
.
故选:A.
本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.
9.B
【解析】
结合随机模拟概念和几何概型公式计算即可
【详解】
如图,由几何概型公式可知:.
故选:B
本题考查随机模拟的概念和几何概型,属于基础题
10.A
【解析】
根据集合交集与补集运算,即可求得.
【详解】
集合,,
所以
所以
故选:A
本题考查了集合交集与补集的混合运算,属于基础题.
11.B
【解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.
【详解】
由向量与的夹角为,
得,
所以,
又,,,,
所以,解得.
故选:B
本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.
12.A
【解析】
分段求解函数零点,数形结合,分类讨论即可求得结果.
【详解】
作出和,的图像如下所示:
函数有三个零点,
等价于与有三个交点,
又因为,且由图可知,
当时与有两个交点,
故只需当时,与有一个交点即可.
若当时,
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;
时,显然与有一个交点,故满足题意.
综上所述,要满足题意,只需.
故选:A.
本题考查由函数零点的个数求参数范围,属中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13.11
【解析】
将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”. 采用分类计数原理,求得总的方法数.
【详解】
(1)先贴如图这块瓷砖,
然后再贴剩下的部分,按如下分类:
5个: ,
3个,2个:,
1个,4个:,
(2)左侧两列如图贴砖,
然后贴剩下的部分:
3个:,
1个,2个:,
综上,一共有(种).
故答案为:11.
本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.
14.
【解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.
【详解】
由,得
,数列是等比数列,首项为2,公比为2,
,,
,
,满足上式,.
故答案为:.
本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.
15.
【解析】
求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.
【详解】
抛物线E: 的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,
所以弦长.
本题考查了抛物线的准线、圆的弦长公式.
16.40
【解析】
根据二项定理展开式,求得r的值,进而求得系数.
【详解】
根据二项定理展开式的通项式得
所以 ,解得
所以系数
本题考查了二项式定理的简单应用,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)
【解析】
(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;
(2)通过对的导函数分析,确定有唯一零点,则就是的极大值点也是最大值点,计算的值并利用进行化简,从而确定.
【详解】
(1)由题意知, 在上恒成立,所以在上恒成立.
令,则,
所以在上单调递增,所以,
所以.
(2)当时,.
则,
令,则,
所以在上单调递减.
由于,,所以存在满足,即.
当时,,;当时,,.
所以在上单调递增,在上单调递减.
所以,
因为,所以,所以,
所以.
(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;
(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.
18.(1);(2).
【解析】
(1)根据复合函数的求导法则可得结果.
(2)同样根据复合函数的求导法则可得结果.
【详解】
(1)令,,则,
而,,故.
(2)令,,则,
而,,故,
化简得到.
本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.
19.(1),;(2),证明见解析
【解析】
(1)利用已知条件建立等量关系求出数列的通项公式.
(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论.
【详解】
(1),,得是公比为的等比数列,,
,
当时,数列的前项积为,则,两式相除得,得,
又得,;
(2)
,
故.
本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题.
20.(Ⅰ),;(Ⅱ)
【解析】
(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.
(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.
【详解】
(Ⅰ)
由
所以曲线的极坐标方程为,
曲线的普通方程为
则曲线的极坐标方程为
(Ⅱ)令,则,,
则,即,
所以,,
故.
本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.
21.(1);(2)证明见解析;(3)是,理由见解析.
【解析】
(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;
(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;
(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.
【详解】
(1)由知其焦点的坐标为,
也是椭圆的一个焦点,,①
又与的公共弦的长为,与都关于轴对称,且的方程为,
由此易知与的公共点的坐标为,,②
联立①②,得,,故的方程为;
(2)如图,,由得,
在点处的切线方程为,即,令,得,即,,
而,于是,
因此是锐角,从而是钝角.
故直线绕点旋转时,总是钝角三角形;
(3)设直线,直线,、、,
则,
设向量和的夹角为,
则的面积为,
由,可得,同理可得,
故有.
又,故,
则,因此,的面积为定值.
本题考查了圆锥曲线的和直线的位置与关系,考查钝角三角形的判定以及三角形面积为定值的求解,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于斜率的方程,计算量大,属于难题.
22.(1)证明见解析(2)
【解析】
(1)要证明平面,只需证明,即可:
(2)取中点,连,以为原点,分别为轴建立空间直角坐标系,分别求出与平面的法向量,再利用计算即可.
【详解】
(1)∵底面为菱形,
∵直棱柱平面.
∵平面.
.
平面;
(2)如图,取中点,连,以为原点,分别为轴建立如图所示空间直角坐标系:
,
点,
设平面的法向量为,
,
有,令,
得
又,
设直线与平面所成的角为,
所以
故直线与平面所成的角的正弦值为.
本题考查线面垂直的证明以及向量法求线面角的正弦值,考查学生的运算求解能力,本题解题关键是正确写出点的坐标.
展开阅读全文