资源描述
2025年北京市育英中学数学高三上期末统考模拟试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若的二项展开式中的系数是40,则正整数的值为( )
A.4 B.5 C.6 D.7
2.已知等差数列的前项和为,若,则等差数列公差( )
A.2 B. C.3 D.4
3.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为( )m.
A.1 B. C. D.2
4.已知向量,,且与的夹角为,则x=( )
A.-2 B.2 C.1 D.-1
5.已知数列的前n项和为,,且对于任意,满足,则( )
A. B. C. D.
6.已知函数,则( )
A. B. C. D.
7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
A. B.4
C. D.5
8.已知平面向量,满足,且,则与的夹角为( )
A. B. C. D.
9.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )
A. B.2 C.4 D.
10.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为( )
A. B. C. D.
11.设集合,,则( )
A. B.
C. D.
12.函数在上单调递减的充要条件是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在的展开式中的系数为,则_______.
14.曲线y=e-5x+2在点(0,3)处的切线方程为________.
15.已知集合,,则__________.
16.二项式的展开式的各项系数之和为_____,含项的系数为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.
18.(12分)设函数.
(1)若恒成立,求整数的最大值;
(2)求证:.
19.(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.
(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?
(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.
20.(12分)已知函数.
(1)解不等式;
(2)若函数的最小值为,求的最小值.
21.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若曲线与直线交于两点,点的坐标为,求的值.
22.(10分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.
(1)求的值及圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
先化简的二项展开式中第项,然后直接求解即可
【详解】
的二项展开式中第项.令,则,∴,∴(舍)或.
本题考查二项展开式问题,属于基础题
2.C
【解析】
根据等差数列的求和公式即可得出.
【详解】
∵a1=12,S5=90,
∴5×12+ d=90,
解得d=1.
故选C.
本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.
3.C
【解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解
【详解】
由题中图像可得,
由变速直线运动的路程公式,可得
.
所以物体在间的运动路程是.
故选:C
本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.
4.B
【解析】
由题意,代入解方程即可得解.
【详解】
由题意,
所以,且,解得.
故选:B.
本题考查了利用向量的数量积求向量的夹角,属于基础题.
5.D
【解析】
利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.
【详解】
当时,.
所以数列从第2项起为等差数列,,
所以,,.
,,
.
故选:.
本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.
6.A
【解析】
根据分段函数解析式,先求得的值,再求得的值.
【详解】
依题意,.
故选:A
本小题主要考查根据分段函数解析式求函数值,属于基础题.
7.B
【解析】
还原几何体的直观图,可将此三棱锥放入长方体中, 利用体积分割求解即可.
【详解】
如图,三棱锥的直观图为,体积
.
故选:B.
本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.
8.C
【解析】
根据, 两边平方,化简得,再利用数量积定义得到求解.
【详解】
因为平面向量,满足,且,
所以,
所以,
所以 ,
所以,
所以与的夹角为.
故选:C
本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.
9.C
【解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.
【详解】
圆可化为.
设,
则的斜率分别为,
所以的方程为,即,
,即,
由于都过点,所以,
即都在直线上,
所以直线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
10.D
【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.
【详解】
设,,
所以,,,
所以.
故选:D
本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.
11.D
【解析】
利用一元二次不等式的解法和集合的交运算求解即可.
【详解】
由题意知,集合,,
由集合的交运算可得,.
故选:D
本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.
12.C
【解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.
【详解】
依题意,,
令,则,故在上恒成立;
结合图象可知,,解得
故.
故选:C.
本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:
(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;
(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.
二、填空题:本题共4小题,每小题5分,共20分。
13.2
【解析】
首先求出的展开项中的系数,然后根据系数为即可求出的取值.
【详解】
由题知,
当时有,
解得.
故答案为:.
本题主要考查了二项式展开项的系数,属于简单题.
14..
【解析】
先利用导数求切线的斜率,再写出切线方程.
【详解】
因为y′=-5e-5x,所以切线的斜率k=-5e0=-5,所以切线方程是:y-3=-5(x-0),即y=-5x+3.
故答案为y=-5x+3.
(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是
15.
【解析】
直接根据集合和集合求交集即可.
【详解】
解: ,
,
所以.
故答案为:
本题考查集合的交集运算,是基础题.
16.
【解析】
将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.
【详解】
将代入二项式可得展开式各项系数和为.
二项式的展开式通项为,
令,解得,因此,展开式中含项的系数为.
故答案为:;.
本题考查了二项式定理及二项式展开式通项公式,属基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1);(2)是定值,.
【解析】
(1)设出M的坐标为,采用直接法求曲线的方程;
(2)设AB的方程为,,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.
【详解】
(1)设动点M的坐标为,由知∥,又在直线上,
所以P点坐标为,又,点为的中点,所以,,,
由得,即;
(2)
设直线AB的方程为,代入得,设,,
则,,设,则,
所以AT的直线方程为即,令,则
,所以D点的坐标为,同理E点的坐标为,于是,
,所以
,从而,
所以是定值.
本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.
18.(1)整数的最大值为;(2)见解析.
【解析】
(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;
(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.
【详解】
(1)由得,
令,,
令,对恒成立,
所以,函数在上单调递增,
,,,,
故存在使得,即,
从而当时,有,,所以,函数在上单调递增;
当时,有,,所以,函数在上单调递减.
所以,,
,因此,整数的最大值为;
(2)由(1)知恒成立,,
令则,
,,,,
上述等式全部相加得,
所以,,
因此,
本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题.
19.(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.
【解析】
(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大.(2)n=1时,X的所有可能的取值为0,1,2,3,1.分别计算出每个变量对应的概率,列出分布列,求期望即可.
【详解】
(1)对一个坑而言,要补播种的概率,
有3个坑要补播种的概率为.
欲使最大,只需,
解得,因为,所以
当时,;
当时,;
所以当或时,有3个坑要补播种的概率最大,最大概率为.
(2)由已知,的可能取值为0,1,2,3,1.,
所以的分布列为
0
1
2
3
1
的数学期望.
本题考查了古典概型的概率求法,离散型随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题.
20.(1)(2)
【解析】
(1)用分类讨论思想去掉绝对值符号后可解不等式;
(2)由(1)得的最小值为4,则由,代换后用基本不等式可得最小值.
【详解】
解:(1)
讨论:
当时,,即,此时无解;
当时,;
当时,.
所求不等式的解集为
(2)分析知,函数的最小值为4
,当且仅当时等号成立.
的最小值为4.
本题考查解绝对值不等式,考查用基本不等式求最小值.解绝对值不等式的方法是分类讨论思想.
21.(1)(2)5
【解析】
(1)首先消去参数得到曲线的普通方程,再根据,,得到曲线的极坐标方程;
(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;
【详解】
解:(1)曲线:消去参数得到:,
由,,
得
所以
(2)代入,
设,,由直线的参数方程参数的几何意义得:
本题考查参数方程、极坐标方程、普通方程的互化,以及直线参数方程的几何意义的应用,属于中档题.
22.(1)2,;(2)证明见解析.
【解析】
(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.
(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.
【详解】
(1)解:由题意得的方程为,
所以,解得.
又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.
所以圆的方程为.
(2)证明:易知直线的斜率存在且不为0,
设,的方程为,代入的方程,
得.
令,得,
所以,解得.
将代入的方程,得,即点N的坐标为,
所以,
,
故.
本题主要考查抛物线的定义几何性质以及直线与抛物线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.
展开阅读全文