资源描述
2025-2026学年浙江省杭州高级中学高三数学第一学期期末检测试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )
A.8 B.7 C.6 D.5
2.已知复数满足:,则的共轭复数为( )
A. B. C. D.
3.已知集合,,,则( )
A. B. C. D.
4.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )
A. B. C. D.
5.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()
A. B. C. D.
6.已知向量,若,则实数的值为( )
A. B. C. D.
7.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )
A. B. C. D.
8.已知向量,满足||=1,||=2,且与的夹角为120°,则=( )
A. B. C. D.
9.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )
A. B. C. D.
10.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=( )
A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}
11.在中,,,,则边上的高为( )
A. B.2 C. D.
12.设等比数列的前项和为,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.
14.已知数列满足,,若,则数列的前n项和______.
15.已知一组数据,1,0,,的方差为10,则________
16.若直线与直线交于点,则长度的最大值为____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.
(1)求动点的轨迹的方程;
(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.
18.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若,求实数的值.
19.(12分)已知函数.
(1)若函数,试讨论的单调性;
(2)若,,求的取值范围.
20.(12分)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
21.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).
(1)分别求,关于x的函数关系式;
(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.
22.(10分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)证明;AC⊥BP;
(Ⅱ)求直线AD与平面APC所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.
2.B
【解析】
转化,为,利用复数的除法化简,即得解
【详解】
复数满足:
所以
故选:B
本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.
3.D
【解析】
根据集合的基本运算即可求解.
【详解】
解:,,,
则
故选:D.
本题主要考查集合的基本运算,属于基础题.
4.A
【解析】
由已知,设.可得.于是可得,进而得出结论.
【详解】
解:依题意,设.
则.
,.
设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.
则,
.
故选:A.
本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.
5.A
【解析】
根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.
【详解】
为偶函数 图象关于轴对称
图象关于对称
时,单调递减 时,单调递增
又且 ,即
本题正确选项:
本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.
6.D
【解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.
【详解】
解:,,即,
将和代入,得出,所以.
故选:D.
本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.
7.B
【解析】
作出图形,设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.
【详解】
如下图所示:
设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,
四边形为正方形,、分别为、的中点,则且,
四边形为平行四边形,且,
且,且,则四边形为平行四边形,
,平面,则存在直线平面,使得,
若平面,则平面,又平面,则平面,
此时,平面为平面,直线不可能与平面平行,
所以,平面,,平面,
平面,平面平面,,
,所以,四边形为平行四边形,可得,
为的中点,同理可证为的中点,,,因此,.
故选:B.
本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.
8.D
【解析】
先计算,然后将进行平方,,可得结果.
【详解】
由题意可得:
∴
∴则.
故选:D.
本题考查的是向量的数量积的运算和模的计算,属基础题。
9.B
【解析】
由,则输出为300,即可得出判断框的答案
【详解】
由,则输出的值为300,,故判断框中应填?
故选:.
本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
10.A
【解析】
解出集合A和B即可求得两个集合的并集.
【详解】
∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},
B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},
∴A∪B={﹣2,﹣1,0,1,2,3}.
故选:A.
此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.
11.C
【解析】
结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.
【详解】
过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.
故选:C
本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.
12.C
【解析】
根据等比数列的前项和公式,判断出正确选项.
【详解】
由于数列是等比数列,所以,由于,所以
,故“”是“”的充分必要条件.
故选:C
本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.
【详解】
三个小朋友之间准备送礼物,
约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),
基本事件总数,
三人都收到礼物包含的基本事件个数.
则三人都收到礼物的概率.
故答案为:.
本题考查古典概型概率的求法,考查运算求解能力,属于基础题.
14.
【解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.
【详解】
由题为等差数列,∴,∴,∴,∴,故答案为
本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.
15.7或
【解析】
依据方差公式列出方程,解出即可.
【详解】
,1,0,,的平均数为,
所以
解得或.
本题主要考查方差公式的应用.
16.
【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.
【详解】
由题可知,直线可化为,
所以其过定点,
直线可化为,
所以其过定点,且满足,
所以直线与直线互相垂直,
其交点在以为直径的圆上,作图如下:
结合图形可知,线段的最大值为,
因为为线段的中点,
所以由中点坐标公式可得,
所以线段的最大值为.
故答案为:
本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)();(2)证明见解析.
【解析】
(1)设点,分别用表示、表示和余弦定理表示,将表示为、的方程,再化简即可;
(2)设直线方程代入的轨迹方程,得,设点,,,表示出直线,取,得,即可证明直线过轴上的定点.
【详解】
(1)设,由已知,
∴,
∴(),
化简得点的轨迹的方程为:();
(2)由(1)知,过点的直线的斜率为0时与无交点,不合题意
故可设直线的方程为:(),代入的方程得:
.
设,,则,
,.
∴直线:.
令,得
.
直线过轴上的定点.
本题主要考查轨迹方程的求法、余弦定理的应用和利用直线和圆锥曲线的位置关系求定点问题,考查学生的计算能力,属于中档题.
18.(1),;(2).
【解析】
(1)将代入求解,由(为参数)消去即可.
(2)将(为参数)与联立得,设,两点对应的参数为,,则,,再根据,即,利用韦达定理求解.
【详解】
(1)把代入,
得,
由(为参数),
消去得,
∴曲线的直角坐标方程和直线的普通方程分别是,.
(2)将(为参数)代入得,
设,两点对应的参数为,,则,,
由得,
所以,即,
所以,而,
解得.
本题主要考查参数方程、极坐标方程、直角坐标方程的转化和直线参数方程的应用,还考查了运算求解的能力,属于中档题.
19.(1)答案不唯一,具体见解析(2)
【解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;
(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.
【详解】
解:(1)因为,
所以,
①当时,,在上单调递减.
②当时,令,则;令,则,
所以在单调递增,在上单调递减.
综上所述,当时,在上单调递减;
当时,在上单调递增,在上单调递减.
(2)因为,可知,
,
令,得.
设,则.
当时,,在上单调递增,
所以在上的值域是,即.
当时,没有实根,且,
在上单调递减,,符合题意.
当时,,
所以有唯一实根,
当时,,在上单调递增,,不符合题意.
综上,,即的取值范围为.
本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.
20.(1)单调减区间为,单调增区间为;(2)详见解析;(3).
【解析】
试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.
试题解析:
(1)
,
当时,.
解得.
当时,解得.
所以单调减区间为,
单调增区间为.
(2)设
,
当时,由题意,当时,
恒成立.
,
∴当时,恒成立,单调递减.
又,
∴当时,恒成立,即.
∴对于,恒成立.
(3)因为
.
由(2)知,当时,恒成立,
即对于,,
不存在满足条件的;
当时,对于,,
此时.
∴,
即恒成立,不存在满足条件的;
当时,令,
可知与符号相同,
当时,,,
单调递减.
∴当时,,
即恒成立.
综上,的取值范围为.
点睛:本题主要考查导数和单调区间,导数与不等式的证明,导数与恒成立问题的求解方法.第一问求函数的单调区间,这是导数问题的基本题型,也是基本功,先求定义域,然后求导,要注意通分和因式分解.二、三两问一个是恒成立问题,一个是存在性问题,要注意取值是最大值还是最小值.
21.(1),.,.
(2)当百米时,两条直道的长度之和取得最小值百米.
【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.
【详解】
解:(1),是边长为3的等边三角形,又,
,.
由,得.
法1:在中,由余弦定理,得
.
故直道长度关于x的函数关系式为,.
在和中,由余弦定理,得
①
②
因为M为的中点,所以.
由①②,得,
所以,所以.
所以,直道长度关于x的函数关系式为
,.
法2:因为在中,,
所以.
所以,直道长度关于x的函数关系式为,.
在中,因为M为的中点,所以.
所以.
所以,直道长度关于x的函数关系式为,.
(2)由(1)得,两条直道的长度之和为
(当且仅当即时取“”).
故当百米时,两条直道的长度之和取得最小值百米.
本题考查了余弦定理和基本不等式,第一问也可以利用三角形中的向量关系进行求解,属于中档题.
22.(Ⅰ)见解析(Ⅱ).
【解析】
(I)取的中点,连接,通过证明平面得出;
(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角.
【详解】
(I)证明:取AC的中点M,连接PM,BM,
∵AB=BC,PA=PC,
∴AC⊥BM,AC⊥PM,又BM∩PM=M,
∴AC⊥平面PBM,
∵BP⊂平面PBM,
∴AC⊥BP.
(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,
∴∠ABC=120°,
∵AB=BC=1,∴AC,BM,∴AC⊥CD,
又AC⊥BM,∴BM∥CD.
∵PA=PC,CM,∴PM,
∵PB,∴cos∠BMP,∴∠PMB=120°,
以M为原点,以MB,MC的方向为x轴,y轴的正方向,
以平面ABCD在M处的垂线为z轴建立坐标系M﹣xyz,如图所示:
则A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),
∴(﹣1,,0),(0,,0),(,,),
设平面ACP的法向量为(x,y,z),则,即,
令x得(,0,1),
∴cos,,
∴直线AD与平面APC所成角的正弦值为|cos,|.
本题考查异面直线垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理使用,难度一般.
展开阅读全文