收藏 分销(赏)

线代试卷-期末.doc

上传人:仙人****88 文档编号:11988953 上传时间:2025-08-26 格式:DOC 页数:3 大小:51KB 下载积分:10 金币
下载 相关 举报
线代试卷-期末.doc_第1页
第1页 / 共3页
线代试卷-期末.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
Linear Algebra Final Exam (A) 2004-2005 1. Filling in the blanks (3’×6=18’) (1) Let be (4×4) matrices, and det(A)=4, det(B)=1, then det(A+B)= . (2) Let , then . (3) Let is a n dimension vector, and , then the matrix AB= . (4) Let A be a (3×3) matrix, and 1,2,3 are the eigenvalues of A. Then the eigenvalues of A* are . (5) Let be a linearly dependent set of vectors, where . Then the number k is . (6) Let . Then the cross product = . 2. Determining the following statement whether it is true(T) or false(F) (2’×6=12’) (1) If A and B are symmetric (n×n) matrices, then AB is also symmetric. ( ) (2) If A and B are nonsingular (n×n) matrices such that A2=I and B2=I, then, (AB)-1=BA ( ) (3) If u·v =0, then either u =0 or v =0 . ( ) (4) If A is nonsingular with A-1=AT, then det(A)=1 ( ) (5) If A and B are diagonal (n×n) matrices, then det(A+B)= det(A)+det(B). ( ) (6) If A is an (n×n) matrix and c is a scalar, then det(cA)=cdet(A).( ) 3. (15’) Calculate the determinant of the matrix . 4. (15’) Consider the system of equations , determine conditions on k that are necessary and sufficient for the system to be has only solution, infinite solutions, and no solution, and express the solutions by vectors. 5. (10’) Let be a set of nonzero vectors in Rm such that when . Show that the set is linearly independent. 6. (15’) Let and . Find B. 7. (15’) Let is an eigenvector of , (Ⅰ) Find the numbers a and b. (Ⅱ) Find the eigenvalues of the matrix A. 3
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服