资源描述
教学准备
1. 教学目标
知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
过程与方法:通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
2. 教学重点/难点
教学重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
教学难点:发现问题中的等量关系
3. 教学用具
4. 标签
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.平行四边形的面积公式是什么?
二、探索新知
【探究3】
如图,要设计一本书的封面,封面长675px,宽525px,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位)?
问题:(1)本题中有哪些数量关系?
(2)如何理解“正中央是一个与整个封面长宽比例相同的矩形”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)解方程并得出结论,对比几种方法各有什么特点?
解:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
因为四周的彩色边衬所点面积是封面面积的1/4,则中央矩形的面积是封面面积的.
(1)对几何图形的分析能力;
(2)在未知数的选择上,能否根据情况,灵活处理;
(3)在讨论中能否互相合作;
(4)解答一元二次方程的能力;
(5)回答问题时的语言表达是否准确.
说明:使学生体会列方程与解方程的完整结合,通过多种方法解得相同结论,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.
【探究4】
如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?
问题:
(1)本题中有哪些数量关系?
(2)剩余草坪的面积,是否就是原草坪的面积减去四条路的面积?
(3)由这些数量关系如何列方程?
三、巩固练习
有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)
说明:通过练习加深学生列一元二次方程解应用题的基本思路
四、小结作业
本节课应掌握:
作业:
课堂小结
小结:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.
展开阅读全文