收藏 分销(赏)

近三年高考全国卷理科立体几何真题.doc

上传人:w****g 文档编号:1192919 上传时间:2024-04-18 格式:DOC 页数:11 大小:1.38MB
下载 相关 举报
近三年高考全国卷理科立体几何真题.doc_第1页
第1页 / 共11页
近三年高考全国卷理科立体几何真题.doc_第2页
第2页 / 共11页
近三年高考全国卷理科立体几何真题.doc_第3页
第3页 / 共11页
近三年高考全国卷理科立体几何真题.doc_第4页
第4页 / 共11页
近三年高考全国卷理科立体几何真题.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、 新课标卷近三年高考题1、(2016年全国I高考)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,且二面角DAFE与二面角CBEF都是(I)证明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值【解析】为正方形 面 面平面平面由知平面平面平面平面面面,四边形为等腰梯形以为原点,如图建立坐标系,设 ,设面法向量为.,即设面法向量为.即 设二面角的大小为.二面角的余弦值为2、(2016年全国II高考)如图,菱形的对角线与交于点,点分别在上,交于点将沿折到位置,()证明:平面;()求二面角的正弦值【解析】证明:,四边形为菱形,;又,又,面建立如图坐标系,

2、设面法向量,由得,取,同理可得面的法向量,3、(2016年全国III高考)如图,四棱锥中,地面,为线段上一点,为的中点(I)证明平面;(II)求直线与平面所成角的正弦值.设为平面的法向量,则,即,可取,于是.4、【2015高考新课标2,理19】如图,长方体中,,点,分别在,上,过点,的平面与此长方体的面相交,交线围成一个正方形DD1C1A1EFABCB1()在图中画出这个正方形(不必说出画法和理由);()求直线与平面所成角的正弦值【答案】()详见解析;()【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角【名师点睛】根据线面平行和面面平行的性质画平面与长方体的面的交线;由交线的位置可

3、确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面的法向量,利用求直线与平面所成角的正弦值5、 【2015高考新课标1,理18】如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余弦值.【答案】()见解析()又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得

4、EF=,EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. 6分()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 12分【考点定位】空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量

5、垂直,从而证明面面垂直;对异面直线所成角问题,也有两种思路,思路1:几何法,步骤为一找二作三证四解,一找就是先在图形中找有没有异面直线所成角,若没有,则通常做平行线或中位线作出异面直线所成角,再证明该角是异面直线所成角,利用解三角形解出该角.6、2014新课标全国卷 如图13,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点(1)证明:PB平面AEC;(2)设二面角DAEC为60,AP1,AD,求三棱锥EACD的体积图13解:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.因为EO平面AEC,PB平面AE

6、C,所以PB平面AEC.(2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,AD,AP的方向为x轴、y轴、z轴的正方向,|为单位长,建立空间直角坐标系Axyz,则D,E,.设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1.又n2(1,0,0)为平面DAE的法向量,由题设易知|cosn1,n2|,即,解得m.因为E为PD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V.7、2014新课标全国卷 如图15,三棱柱ABC A1B1C1中,侧面BB1C1C为菱形,ABB1C.图15(1)证明:

7、ACAB1;(2)若ACAB1,CBB160,ABBC,求二面角A A1B1 C1的余弦值解:(1)证明:连接BC1,交B1C于点O,连接AO,因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1OCO,故ACAB1.(2)因为ACAB1,且O为B1C的中点,所以AOCO.又因为ABBC,所以BOA BOC.故OAOB,从而OA,OB,OB1两两垂直以O为坐标原点,OB的方向为x轴正方向,|OB|为单位长,建立如图所示的空间直角坐标系Oxyz.因为CBB160,所以CBB1为等边三角形,又ABBC,则A,B(1,0,0),B1,C.,AB,1BC.设n(x,y,z)是平面AA1B1的法向量,则即所以可取n(1,)设m是平面A1B1C1的法向量,则同理可取m(1,)则cosn,m.所以结合图形知二面角A A1B1 C1的余弦值为.11

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服