资源描述
第一单元 简单的统计(一)
单元教学目标:
1、使学生初步学会收集原始数据和分类整理的方法。
2、使学生认识分组整理和编制统计表的意义
3、使学生初步学会把几个有联系的统计表合编成一个复式统计表
4、使学生进一步理解求平均数的意义
单元教学重点:
1、使学生初步学会收集原始数据和分类整理的方法。
2、使学生认识分组整理和编制统计表的意义
单元教学难点:
1、使学生初步学会把几个有联系的统计表合编成一个复式统计表
2、使学生进一步理解求平均数的意义
单元课时安排:
5课时
第一课时
数据的收集和整理(一)——方法
教学内容
教科书第1~2页复习题、例1,完成练习一的第1~3题.
教学目标
1、 过观察和动手操作等教学活动,使学生初步学会收集原始数据和分类整理的方法。
2、 过有说服力的数据使学生受到爱国主义教育。
教学重点::收集数据的方法。
教学难点:过有说服力的数据使学生受到爱国主义教育。
教学过程
一、创设情境
我们已学过收集静止的数据,如:第1页的复习题(投影显示)。
1、点一名学生上来完成下面的统计表和条形统计图,其余的学生做在书上。
2、统计一下我们班同学寒假里读课外书的数量情况。
以前我们学习的是收集静止事物的数据,如复习题,但有的时候要收集的数据往往不是静止的,要随着时间的变化逐个收集和积累,这时就要采用另外的方法来收集和积累数据。今天我们进一步学习:
(板书课题)数据的收集和整理
二、探索研究
1、探索收集数据的方法。
放:例1中的路口在10分种内各种机动车通过的录像,让学生看。
(1)小组合作,探索研究
①各种车辆的出现有没有规律?
②在这种情况下,怎样才能准确无误地记下各种车辆通过的数据?
③小组讨论:用什么方法记录数据?
④汇报展示,统一方法。
(2)学生实际操作。
每人拿出一张纸写出各种车辆名称,然后听老师报通过的车辆,并画“正”字记载。
讲:你们纸上收集的数据是原始数据。为了清楚地表示10分种内各种机动车通过路口的辆数和总辆数,需要把这些数据加以整理,制成统计表或条形统计图。
2、数据的整理。
(1)统计表。
想:这个统计表该怎样制?要分几栏?
(2)条形统计图。
投影显示教材第2页空白的条形统计图。
想:①图中的每格代表几?
②每种车的辆数如何用竖条表示出来?
③如果收集的数目较大怎样办?
做:让学生翻开书第2 页,将条形统计图补充完整。
三、作业。
做练习一的第1题。做练习一的第3题。
附板书设计:
数据的收集和整理(一)——方法
教学反思:
第二课时
数据的收集和整理(一)——分组整理
教学内容
教科书第3~4页例2,完成“做一做”的题目和练习一的第4~5题.
教学目标
① 使学生认识分组整理和编制统计表的意义;
② 初步学会分组整理原始数据的方法;
③ 学会填写简单的统计表。
教学重点::分组整理原始数据的方法。
教学难点:学会填写简单的统计表。
教学过程
一、创设情境
1.我们复习一下已学过的简单数据整理和一些统计表的知识。
2.下面是某班数学兴趣小组中女同学测量身高的统计表。
姓名
王兰
刘方
张欣
陈平
周玲
平均
身高(厘米)
143
140
142
144
151
独立之后思考回答问题:
①如何求出这组女同学的平均身高?
②这组女同学的身高有什么特点?
③最高的女同学比最矮的女同学高多少厘米?
④如果这张表上的女同学很多,又不能清楚地看出她们身高的分布状况,怎么办?这节课我们学习把原始数据按照数量的大小划分成几组,再制成统计表。
二、探索研究
1.分组整理原始数据的方法。
(1)教师出示记录单,学生独立思考
①谁最高?身高多少?②谁最矮?身高多少?
③身高大多在什么范围?(很难看出,要分组整理一下)
(2)小组讨论:
怎样分组整理?说说你的设想。
(3)分组整理的具体做法(对照着做):
①找出原始数据的范围(学生找出记录单中原始数据的范围)。130~154厘米。
②把数据的范围划分成几组并按照一定的顺序排列制成表。(按5 厘米一组可分为五组,再分成“身高”和“人数”两栏制好表并出示例2的统计表)
③统计各组中的数目,填写统计表(用画正字的方法收集数据并让学生填好统计表)。
(4)看书回答问题:
①看教材第3页,回答下面的三个问题。
②看教材第4页,“想一想”该怎么办?
三、课堂实践
调查本班学号1~32的学生的体重,并将调查结果按分组的方法进行整理。
四、作业:做练习一的第4、5题。
附板书设计:
数据的收集和整理(一)——分组整理
姓名
王兰
刘方
张欣
陈平
周玲
平均
身高(厘米)
143
140
142
144
151
教学反思:
第三课时
数据的收集和整理(一)——复式统计表
教学内容
教科书第8~9页例3,完成“做一做”的题目和练习二的第1题.
教学目标
使学生初步学会把几个有联系的统计表合编成一个复式统计表,认识复式统计表的意义和作用,并通过教材中有说服力的数据对学生进行爱科学的教育。
教学重点:让学生了解分栏的方法和步骤,看懂表头。
教学难点:认识复式统计表的意义和作用。
教学过程
一、创设情境
1.出示。
下面是兴农小学活动课程四个小组的学生人数。
数学组:男生14人,女生8人。航模组:男生13人,女生4人。
生物组:男生7人,女生12人。美术组:男生12人,女生12 人。
请根据上面的数据填写下面的统计表。
美术组 生物组
性别
合计
男生
女生
性别
合计
男生
女生
性别
合计
男生
女生
数学组 航模组
性别
合计
男生
女生
2.请同学们思考并回答。
(1)每张统计表能反映出什么情况?
(2)如果想了解或者比较各个小组的人数情况,用这四张统计表是否方便?有无更好的方法?(让学生分组讨论,说说各自的想法)
显然用这四张表比较不方便,为了便于比较各小组中男女生参加人数的情况,我们可以把它们合编成一个统计表。(板书课题:复式统计表)
二、探索研究
1.小组合作讨论
(1)把这四张有联系的统计表合编成一个统计表,要反映哪几个方面的情况?
(2)怎样划分统计表的栏目才能反映出这两个方面的情况呢?
2.小组合作实践
①让学生翻开书第8页,小组合作填写复式统计表并填写第9页上的第(1)~(4)小题。②填好后回答:合编后的统计表有什么好外?
三、课堂实践: 做第9页的“做一做”
四、作业:做练习二的第1、3题。
附板书设计:
数据的收集和整理(一)——复式统计表
下面是兴农小学活动课程四个小组的学生人数。
数学组:男生14人,女生8人。航模组:男生13人,女生4人。
生物组:男生7人,女生12人。美术组:男生12人,女生12 人。
教学反思:
第四课时 求平均数
教学内容
教科书第13~14页的例1、例2和“做一做”的题目,练习三的第1~4题.
教学目标
使学生进一步理解求平均数的意义,学会较复杂的求平均数的方法。
教学重点:学会较复杂的求平均数的方法。
教学难点:使学生进一步理解求平均数的意义
教学过程
一、创设情境
出示第13页的复习题,让学生思考并回答:
(1) 这题要求的是什么?必须要知道什么?怎样列式解答?
计算的结果能说明什么问题?它有什么用?
思考:全班同学上美术课每个人都带了些“橡皮泥”做手工用,为了使大家都拥有有等量的“橡皮泥”,我们该用什么办法把我们手中的“橡皮泥”平均一下呢?
今天这节课我们将继续学习求平均数(板书课题)
二、探索研究
小组合作讨论:研究例1 。
1、观察比较:例1与复习题有什么相同处与不同处?
2、思考并回答:
(1)这题求的是什么的平均数?(2)必须要知道什么?
(3)你会解答这道题吗?
①全班一共投中多少个?28+33+23=84(个)
②全班一共有多少人?10+11+9=30(人)
③全班平均每人投中多少个?84÷30=2.8(个)
列成综合算式是
(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
小组合作学习:研究例2。
1、观察比较:例1与例2 的条件与问题又有什么相同点和不同点?
2、思考并解答:你能联系例1 的解题思路计算出这题的结果吗?
①全班一共投中多少个?2.5×12+3×11+3.2×10=95(个)
②全班一共有多少人?12+11+10=33(人)
③全班平均每人投中多少个?95÷33≈2.9(个)
列成综合算式是:
(2.5×12+3×11+3.2×10)÷(12+11+10)
=95÷33
≈2.9(个) 答:全班平均每人投中2.9个。
三、课堂实践做教材第14页的“做一做”
四、作业1、练习三的第2题。2、练习三的第1、3、4题
附板书设计:
求平均数
列成综合算式是:
(2.5×12+3×11+3.2×10)÷(12+11+10)
=95÷33
≈2.9(个) 答:全班平均每人投中2.9个。
教学反思:
第五课时
整理和复习
教学内容
教科书第17页的第1~3题,练习四的第1~3题.
教学目标
掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。
教学重点:掌握较复杂的求平均数的应用题的解答方法。
教学难点:掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。
教学过程
一、边练习边复习
学生在课本上自己完成,并根据题目体会:
1.分段对数据整理的方法
2.怎样从复式统计表中获取信息。
3.求平均数应用题应该注意什么问题?
二、学生小组合作学习
1.统计的步骤是什么?对应的方法是什么?
2.求平均数应用题的思路是什么?(分什么;按什么分)
三、课堂实践
练习四的1~3题。
四、课外实践
练习四的第4题。
第二单元 长方体和正方体
单元教学目标:
1、使学生掌握长方体的特征,形成长方体的概念.
2、理解长方体和正方体之间的关系
3、掌握长方体表面积的计算方法。
4、学会解决实际生活中有关长方体和正方体表面积的计算问题。
单元教学重点:
1、使学生掌握长方体的特征,形成长方体的概念.
2、理解长方体和正方体之间的关系.
单元教学难点:
1、掌握长方体表面积的计算方法。
2、学会解决实际生活中有关长方体和正方体表面积的计算问题。
单元课时安排:
12课时
第一课时 长方体的认识
教学内容
教科书第20~21页例1、例2,完成相应的“做一做”中的题目和练习二十七的第1~3题.
教学目标
通过观察实物和动手操作等教学活动,使学生掌握长方体的特征,形成长方体的概念,发展学生的空间观念。
教学重点:长方体的特征。
教学难点:长方体的认识
教学过程
一、创设情境
用两个同样大小的量筒装600毫升的水。然后往其中一只里放入一块石头,让学生观察,这只量筒里水面的变化情况?小组讨论一下为什么会出现这种情况?更好地帮助学生理解“空间”这一概念。
从今天开始,我们的数学课主要研究长方体和正方体,这节课我们首先学习长方体的认识,并板书课题。
二、探索实践
1.让学生拿出准备好的一个长方体的纸盒来观察它们的特征。
(1)认识长方体的面。(让学生分组讨论)
①用手摸一摸它有几个面(注意培养学生有顺序地观察)
②每个面是什么形状?(注意出示也有两个相对的面是正方形)
③哪些面完全相等?(演示给学生看)
再根据学生的发言用投影归纳出:
长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。
(2)认识长方体的棱。
让学生用手摸一摸长方体每两个面相交的地方(有意引导学生有顺序地摸)。这些地方我们给它起个什么名字呢?(学生按自己的想法来做,最后统一为“棱”)
再让学生分小组去数和量:
①数:长方体有多少条棱?(要说出数的方法)
②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)
根据学生的发言归纳出:
长方体有12条棱,相对的4条棱的长度相等。
(3)认识长方体的顶点。
让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:
①你们知道它叫什么吗?(顶点)
②长方体有几个顶点?(8 个)
(4)拿一个长方体放在讲台上让学生观察。
最多能看到几个面?(3个面)
讲:所以我们通常把长方体画成这样。
(5)用填空的形式小结长方体的特征。
长方体是由 个长方形(特殊情况有两个相对的面是 形)围成的 图形。在一个长方体中,相对的两个面 ,相对的棱的长度 。
2、教学长方体的长、宽、高。
让学生分组讨论如下的两个问题:
(1)它的12条棱可以分成几组?怎样分?
(2)相交于同一个顶点的三条棱长度相等吗?
找几名代表将测量结果告诉大家。
想一想:
(1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)
(2)长方体的长、宽、高的长短与这个长方体有没有关系?(投影显示出几个长、宽、高不同的长方体)
结论:长方体的大小和形状是由它的长、宽、高决定的。
三、课堂实践
1.量一量教科书的长、宽、高。
2.练习五的第2题。
3.练习五的第3题。
五、课堂小结
由学生小结今天学习的内容。
附板书设计:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
教学反思:
第二课时 正方体的认识
教学内容
教科书第22页,完成“做一做”中的题目和练习八的第4~8题.
教学目标
通过观察实物和动手操作等教学活动,使学生掌握正方体的特征,理解长方体和正方体之间的关系,发展学生的空间观念。
教学重点:正方体的特征及长、正方体的异同点。
教学难点:理解长方体和正方体之间的关系,发展学生的空间观念。
教学过程
一、创设情境
1、请大家拿出昨天做好的长方体,边观察边填写下表:(投影显示)
形体
面
棱
顶点
面的形状
面积
棱长
长方体
2、填好表后请回答:(投影显示)
(1)什么叫做棱?
(2)什么叫做顶点?
(3)相交于一个顶点的三条棱的长度分别叫做这个长方体的什么?
以上是长方体的特征及有关知识,(拿出一个正方体)你知道它有什么特征吗?这节课我们就来学习和研究正方体的特征,并板书课题。
二、探索实践
1.让学生拿出准备好的正方体,小组合作学习。
(1)观察并回答:
①它们的形状都是什么体?(正方体)
②正方体还有一个名称你知道吗?(立方体)
(2)小组讨论。
请同学们拿出你们准备好的正方体,观察和讨论一下正方体有什么特征。然后选一个代表说出你们观察讨论的结果,最后将学生的发言归纳在下表中。(投影出示)
形体
面
棱
顶点
面的形状
面积
棱长
正方体
(3)用填空的形式小结。
正方体是由 个 的正方形围成的 图形。正方体也有 条棱,它们的长度 。正方体也有 个顶点。
(4)做第22页的“做一做”。
请同学们拿出准备好的正方体展开图的硬纸片,动手将它折、贴成一个正方体,再量出它的棱长,并标出它的棱长。
2.学习长方体和正方体的异同点。
首先将复习与新课的两张表合在一起如下图:(投影显示)
形体
面
棱
顶点
面的形状
面积
棱长
长方体
6
12
8
6 个面都是长方形(特殊时有两个相对的面是正方形)
相对的面的面积相等
每组互相平行的四条棱的长度相等
正方体
6
12
8
都是正方形
都相等
都相等
(1)请你观察一下长方体和正方体的特征,看它们有哪些相同点,有哪些不同点,根据学生的回答填完上表。
(2)想一想:长方体和正方体有什么关系?
结论:正方体可以说成是长、宽、高都相等的长方体,它是一种特殊的长方体。用图表示。(投影显示)
长方体
正方体
三、课堂实践
1.练习五的第5题。
2.练习五的第6题。
3.练习五的第7题。先让学生口述出上下、左右、前后六个面的的长和宽,再让学生观察后归纳出相对的两个面的长和宽。
四、作业
1.练习五的第8题。
2.练习五的第9*、10*题。
附板书设计:
正方体的认识
形体
面
棱
顶点
面的形状
面积
棱长
长方体
6
12
8
6 个面都是长方形(特殊时有两个相对的面是正方形)
相对的面的面积相等
每组互相平行的四条棱的长度相等
正方体
6
12
8
都是正方形
都相等
都相等
教学反思:
第三课时
长方体和正方体的表面积,长方体表面积的计算
教学内容
教科书第25~26页的内容,练习六的第1~4题.
教学目标
① 使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。
② 在引导学生理解和推导长方体表面积计算方法的过程中,培养学生的抽象概括能力、推理能力和思维的灵活性,同时发展他们的空间观念。
教学重点:表面积的意义。
教学难点:长方体表面积的计算方法。
教学过程
一、创设情境
1、说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空:
上、下两个面的长是 宽是 。
这个长方体 左、右两个面的长是 宽是 。
前、后两个面的长是 宽是 。
3、想一想。长方体和正方体都有几个面?
4.老师现在做了一个“长6㎝,宽5㎝,高4㎝”的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?
二、实践探索
1.个别学习-------表面积的概念
(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。
(2)沿着长方体和正方体的棱剪开并展平。
(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?
学生试着说一说。
2.小组合作学习-------计算塑料片的面积
(1)想:这个问题,实际上就是要我们求什么?
使学生明确:就是计算这个长方体的表面积。
(2)学生分组研究计算的方法。
(3)找几名代表说一说所在小组的意见。
解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)
6×5×2+6×4×2+5×4×2
=60+48+40
=148(平方厘米)
解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)
(6×5+6×4+5×4)×2
=74×2
=148(平方厘米)
(4)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂实践
做第26页的“做一做”,学生独立列式算出后集体订正。
四、课堂小结
你发现长方体表面积的计算方法了吗?
五、课堂练习
做练习六的第1、2题,学生口答,学生讲评。
附板书设计:
长方体和正方体的表面积,长方体表面积的计算
结论:
=长×宽×2+长×高×2+宽×高×2
长方体的表面积
=(长×宽+长×高+宽×高)×2
第四课时
正方体表面积的计算以及长方体和正文体表面积的实际应用
教学内容
教科书第25~26页的内容,练习六的第1~4题.
教学目标
1、 根据正方体特征,推导出正方体表面积的计算方法。
2、 学会解决实际生活中有关长方体和正方体表面积的计算问题。
教学重点:正方体表面积的计算方法。
教学难点:学会解决实际生活中有关长方体和正方体表面积的计算问题。
教学过程
一、创设情境
1.看图并回答。
(1) 什么是长方体的表面积?
(2)怎样计算这个长方体的表面积?
2.看看各自准备的正方体回答问题。
(1)什么是正方体的表面积?
(2)正方体6个面的面积怎样?
(3)如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?
师:好,今天这节课我们就来学习正方体表面积的计算方法以及长方体和正方体表面积的实际应用。(板书课题)
二、实践探索
1.小组合作学习----正方体表面积的计算。
①题中的棱长就是每个面的什么?
②你能算出这个正方体的表面积吗?
③小组合作,寻找计算方法。
3×3×6 或者 32 × 6
=9×6 =9×6
=54(平方厘米) =54(平方厘米)
说明:上面两种做法都对,32 表示2个3相乘。
2.教学计算长方体和正方体某几个面的面积。
在实际生产和生活中,有时还要根据实际需要计算长方体或正方体中某几个面的面积,如:投影显示例3,拿出实物模型。
(1) 帮助学生分析题意。
①售米的木箱是什么体?
②“上面没盖”就是没有哪一个面?
③要求的问题,实际上是算哪几个面的面积之和?
(2)再让学生分小组讨论解答方法,只列式不计算。
(3)学生讲所列出的算式的含义,确定正确后算出结果,集体订正。
三、课堂实践:第27页的“做一做”,
四、作业:做练习六的第5、6、7题。
附板书设计:
正方体表面积的计算以及长方体和正文体表面积的实际应用
3×3×6 或者 32 × 6
=9×6 =9×6
=54(平方厘米) =54(平方厘米)
教学反思:
第五课时
体积和体积单位
教学内容
教科书第30~32页,完成“做一做”中的题目和练习七的第1~3题.
教学目标
通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米,同时发展学生的空间观念和培养学生的推理能力。
教学重点:体积的含义和常用的体积单位。
教学难点:通过实验观察,使学生理解体积的含义
教学过程
一、揭示课题
我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。
二、探索研究
1.实验观察
观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?
观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?
观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?
图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?
结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)
加深理解:(1)你知道什么是长方体和正方体的体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。
2.教学体积单位。
(1)介绍体积单位。
常用的体积单位有:立方米、立方分米、立方厘米。
(2)1立方米、1立方分数、1 立方厘米的体积各有多大。
1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?
(3 )建立表象,感知大小
投影显示第36页的第2题,让学生口答。
3.长度单位、面积单位、体积单位的联系与区别。
出示第31页的“做一做”的第一题,让学生说。
三、课堂实践
做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。
四、作业:做练习七的第3题
附板书设计:
体积和体积单位
结论:物体所占空间的大小叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
教学反思:
第六课时
长方体和正方体的体积计算
教学内容
教科书第32~34页,完成“做一做”中的题目和练习七的第4~7题.
教学目标
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点:长方体、正方体体积公式的推导。
教学难点:培养学生实际操作能力,同时发展他们的空间观念。
教学过程
一、创设情境
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
4 3 1
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:V = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
附板书设计:
长方体和正方体的体积计算
结论:长方体的体积=长×宽×高。
用字母表示:V = a×b×h=abh
第七课时
长方体和正方体统一的体积公式
教学内容
教科书第35页,完成“做一做”中的题目和练习七的第8~12题.
教学目标
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点:理解底面积。
教学难点:提高学生综合运用知识的能力。
教学过程
一、创设情境
1、 指出下图中长方体的长、宽、高和正方体的棱长。(显示)
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:
V = sh
三、课堂实践
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结
学生小结今天学习的内容
五、课后实践
做练习七的第10、11、12题。
附板书设计:
长方体和正方体统一的体积公式
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
教学反思:
第八课时
体积单位之间的进率
教学内容
教科书第38~39页,完成“做一做”中的题目和练习八的第1~5题.
教学目标
使学生在理解的基础上掌握常用的体积单位之间的进率和名数的改写。
教学重点:体积单位之间的进率。
教学难点:掌握常用的体积单位之间的进率和名数的改写。
教学过程
一、创设情境
填空:①长方体体积= ;②常用的体积单位有 、 、 ;③正方体体积= 。
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
二、探索研究
1.小组学习——体积单位间的进率。
(1)出示:1个棱长是1分米的正方体模型教具。
提问:①当正方体的棱长是1分米时,它的体积是多少?②当正方体的棱长是10厘米时,它的体积是多少?③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组汇报结论:1立方分米=1000立方厘米 同理得出:1立方米=1000立方分米
用填空的形式小结:
从上面可以看出,相邻两个体积单位之间的进率都是 。
(2).将长度单位、面积单位、体积单位加以比较
(3)学习体积单位名数的改写。
先思考:
1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例3,并写成如下形式:
8立方米=( )立方分米 0.54立方米=( )立方分米
出示例4,并写成如下形式:
3400立方厘米=( )立方分米 96立方厘米=( )立方分米
学生独立思考,再小组讨论自己是怎样想和做的。
出示例5。放手让学生独立审题并解答,再针对出现的问题重点讲解。
解法一:
2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
解法二:
2.2米=22分米 1.5米=15分米 0.01米=0.1分米
22×15×0.1=33(立方分米)
三、课堂实践:将练习八的第1、2题填在书上。
四、作业:练习八的3、4、5题。
附板书设计:
体积单位之间的进率
1立方分米=1000立方厘米 1立方米=1000立方分米
解法一: 解法二:
2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
教学反思:
第九课时
容积和容积单位
教学内容
教科书第40页,完成“做一做”和练习八的第6~10题.
教学目标
① 使学生认识常用的容积单位:升、毫升。
② 理解容积和体积的概念既有联系又有区别。
教学重点:容积和体积概念的联系与区别。
教学难点:掌握升与毫升间的进率以及它们和体积单位的关系。
教学过程
一、复习引入
一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?
二、探索研究
1、教学容积的概念。
(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?
师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。
(2)学生举例。
①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)
(3)容积的计算方法。
师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
师:这是为什么?(出示一个木盒)
2、教学容积单位(板书课题)
(1)翻开书第40页,让学生看第三自然段。
板书:升 毫升
(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:1升=1000毫升。
(3)容积单位与体积单位的关系。
1升=1立方分米 1毫升=1立方厘米
3、应用。
出示例6,指一名学生读题。
(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?
(2)学生做完后集体订正。
三、课堂实践
第40页的“做一做”中的第1题、第2题;练习八的第6、7题。
四、课堂小结
学生小结今天学习的内容。
五、思考练习
做练习八的第8、9、10题。
附板书设计:
容积和容积单位
容积单位与体积单位的关系。
1升=1立方分米 1毫升=1立方厘米
教学反思:
第十课时
表面积和体积的对比
教学内容
教科书第44页,完成“做一做”中的题目和练习九的第1~5题.
教学目标
通过对比练习使学生进一步分清表面积和体积各自的计算方法以及这两个概念的区别,能够正确地计算长方体和正方体的表面积和体积。
教学重点:分清这两个概念和各自的计算方法。
教学难点:能够正确地计算长方体和正方体的表面积和体积。
教学过程
一、揭示课题
我们已经学会计算长
展开阅读全文