收藏 分销(赏)

高中数学数列知识点总结.doc

上传人:精*** 文档编号:1165720 上传时间:2024-04-17 格式:DOC 页数:6 大小:176.07KB
下载 相关 举报
高中数学数列知识点总结.doc_第1页
第1页 / 共6页
高中数学数列知识点总结.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:(为常数), 等差中项:成等差数列 前项和 性质:是等差数列 (1)若,则 (2)数列仍为等差数列,仍为等差数列,公差为; (3)若三个成等差数列,可设为 (4)若是等差数列,且前项和分别为,则 (5)为等差数列(为常数,是关于的常数项为0的二次函数) 的最值可求二次函数的最值;或者求出中的正、负分界项, 即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数的等差数列,有 ,. (7)项数为奇数的等差数列,有 , ,. 2. 等比数列的定义与性质 定义:(为常数,),. 等比中项:成等比数列,或. 前项和:(要注意!) 性质:是等比数列 (1)若,则 (2)仍为等比数列,公比为. 注意:由求时应注意什么? 时,; 时,. 3.求数列通项公式的常用方法 (1)求差(商)法 如:数列,,求 解 时,,∴ ① 时, ② ①—②得:,∴,∴ [练习]数列满足,求 注意到,代入得;又,∴是等比数列, 时, (2)叠乘法 如:数列中,,求 解 ,∴又,∴. (3)等差型递推公式 由,求,用迭加法 时,两边相加得 ∴ [练习]数列中,,求() (4)等比型递推公式 (为常数,) 可转化为等比数列,设 令,∴,∴是首项为为公比的等比数列 ∴,∴ (5)倒数法 如:,求 由已知得:,∴ ∴为等差数列,,公差为,∴, ∴ ( 附: 公式法、利用、累加法、累乘法.构造等差或等比或、待定系数法、对数变换法、迭代法、数学归纳法、换元法 ) 4. 求数列前n项和的常用方法 (1) 裂项法 把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求 解:由 ∴ [练习]求和: (2)错位相减法 若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比. 如: ① ② ①—② 时,,时, (3)倒序相加法 把数列的各项顺序倒写,再与原来顺序的数列相加. 相加 [练习]已知,则 由 ∴原式 (附: a.用倒序相加法求数列的前n项和 如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 b.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 c.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 d.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。 e.用迭加法求数列的前n项和 迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。 f.用分组求和法求数列的前n项和 所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 g.用构造法求数列的前n项和 所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。 ) 6
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服